Research Projects

2021

Interrogación de Temperaturas Extremas con Sensores Ópticos (InTEnSO)

2021- - Area: Photonics - Group: Photonics Research Labs (PRL)

El objetivo principal del proyecto InTEnSO es modificar sensores de fibra óptica con el fin de otorgarles mayor resistencia mecánica para su uso en condiciones de temperaturas muy altas y entornos que pueden ser agresivos. Dicho desarrollo debería ampliar grandemente el abanico de los usos posibles de los sensores de temperatura basados en fibras ópticas FBG y facilitar la democratización de dicha tecnología a nivel industrial. Para ampliar el rango de medida y la aplicabilidad industrial de los actuales sensores de fibra óptica, el proyecto InTenSO tiene por objetivo desarrollar un recubrimiento innovador que permite proporcionar una compatibilidad completa para trabajar en condiciones extremas, asegurando al mismo tiempo una resistencia química y mecánica mejorada y una flexibilidad adecuada, permitiendo también trabajar en entornos de altos niveles de intensidad de campos electromagnéticos. El proyecto InTEnSO presentado conjuntamente por parte del Instituto de Tecnología Química (UPV/CSIC), liderado por el Pr Avelino Corma, y del Iteam (UPV), liderado por el Pr Salvador sales, ha recibido financiación de la Agencia Valenciana de Innovación (AVI) en el ámbito de su programa “Valorización y transferencia de resultados de investigación a las empresas” (ayuda INNVA1/2021/64). Consulta la web del proyecto aquí.

2020

Piloto de Tecnología 5G Comunidad Valenciana (Red.es)

2020-2021

This is a project to validate the capabilities of 5G technology in Valencia, Spain by testing 15 use cases that involve sectors of health, industry, energy, gaming, and tourism. Valencia 5G has a budget of 10,145,234 euros and involves Orange, Huawei, Arborea Intellbird, CFZ Cobots, Global Omnium Idrica, Etra Research, and Development, Red Eléctrica y de Telecomunicaciones Innovación y Tecnología and Robotnik. The project aims to contribute from three approaches: support the deployment of the first 5G networks in Spain; experiment with the network management techniques; and testing the main capabilities of the technology: ultra-reliable and low-latency communications; massive machine-to-machine communications; and extremely high speed and capacity mobile broadband. The MCG of the iTEAM will be involved in 5 out of 15 uses cases, being these: (1) Robotic Remote diagnostic. (2) Fleet management: Robotics Remote control of AGVs. (3) Robotics-Remote inspection and maintenance. (4) 5G Digital Contents. (5) Massive IoT for smart meters in supplies. The use case of robotic remote diagnostic for the skin cancer diagnostic using the 5G mobile communications network, consisting of a specialist will scan the patient remotely using robotic arms that have built-in biometric sensors that capture and process the information. On the other hand, the VLCCAMPUS-5G of the Universitat Politècnica de València, has been chosen as one of the testing scenarios.

Advanced Urban Delivery and Refuse Recovery (AUDERE)

2020-2021

AUDERE aims to design and develop an intelligent and innovative system for urban refuse collection y and last-mile delivery logistics. To fulfil this objective, a fleet of autonomous vehicles (autonomous mobile robots) are equipped with 5G connectivity to carry out last-mile delivery and urban waste container recovery tasks. The AUDERE system will assess the technical, economic, social, and environmental viability in a range of use cases. Therefore, AUDERE will offer high-tech solutions to the growing forward and reverse logistics needs in our cities. Trials will be performed in two scenarios. The first one is the VLC-CAMPUS-5G of the Universitat Politècnica de València, which is equipped with the infrastructure of a private 5G mobile network that allows the validation of different use cases, such as logistics, automotive, industry, media, among others. In addition, among the main advantages of VLC-CAMPUS- 5G we can mention that it is a closed and controlled environment, which could be considered as a small city due to its infrastructure, commercial and sport places, banks, parks and where more than 20,000 people move daily. The second scenario is the La Pinada District, which is an eco-district, the first in Spain, that will integrate the principles of sustainable urban development, creating an attractive environment for family living, work, and enjoyment of nature. The results of this project will define new technological products that can be deployed in Smart Cities or Smart Quarters.

2019

5G bROadcast Software defined radio Experiment (5G-ROSE)

2019-2020

The 5G-ROSE project worked towards the transmission of 5G broadcast services over SFN virtualized networks, using opensource software. The project is very well aligned with the current trends in the world of 5G. On one side, the virtualisation of the 5G infrastructure, both core and RAN (Radio Access Network), allowing for different deployment architectures with maximum flexibility and scalability. On the other side, the adoption of so-called LTE-based 5G Terrestrial Broadcast mode, which is currently under standardization in 3GPP Release-16, and that will meet the requirements of broadcasters for the distribution of media content in 5G. 5G-ROSE has made use of the virtualised IRIS testbed at Trinity College Dublin. The project has used and contributed to the open source SDR LTE software suite srsLTE, offered by Software Radio Systems. The 5G-ROSE project consisted of three clearly differentiated, but related, broadcast experiments over a virtualised SDR (Software Defined Radio) access infrastructure. The first experiment was the development and testing of the first virtualized Multimedia Broadcast Multicast Service over Single Frequency Network (MBSFN) transmission. The second experiment dealt with the introduction of 5G physical layer Release (Rel)-16 specific components. The third part was about the combination of both unicast and broadcast transmissions by means of network slicing.

This project has been funded by third Open Call for experiment of H2020 project Orchestration and Reconfiguration Control Architecture (ORCA)

2020

NEXT-GENERATION IOT SOLUTIONS FOR THE UNIVERSAL SUPPLY CHAIN (INGENIOUS)


iNGENIOUS will exploit some of the most innovative and emerging technologies in line with the standardised trend, contributing to the Next-Generation IoT and proposing technical and business enablers to build a complete platform for supply chain management. iNGENIOUS embraces the 5G Infrastructure Association (5G IA) and Alliance for Internet of Things Innovation (AIOTI) vision for empowering smart manufacturing and smart mobility verticals. The iNGENIOUS network layer brings new smart 5G-based IoT functionalities, federated Multi-Access Edge Computing (MEC) nodes and smart orchestration, needed for enabling the projected real-time capable use cases of the supply chain. Security and data management are fully recognized as important features in the project. iNGENIOUS will create a holistic security architecture for next-generation IoT built on neuromorphic sensors with security governed by Artificial Intelligence (AI) algorithms and tilebased hardware architectures based on security by design and isolation by default. In the application layer, iNGENIOUS new AI mechanisms will allow more precise predictions than conventional systems. Project outcomes will be validated into 4 large-scale Proof of Concept demonstration, covering 1 factory, 2 ports, and 1 ship, encompassing 6 uses cases. iTEAM is the coordinator of the project, and the leader of the media use case. INGENIOUS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957216

Integrated Telematics for Next Generation 5G Vehicular Communications (ITN-5VC)


ITN-5VC aims to investigate how multi-band multi-antenna communications, including mmWave, could be integrated together with radar heads and other wireless sensors into the same telematics unit, so that transmission chains and radiation systems were reused using the same spectrum in an opportunistic manner. This idea has important implications in the design of the vehicle and its communications that will also be addressed in the project. With this premise, the project aims to investigate the future C-V2X systems based on 5G NR and how to integrate them with autonomous driving sensor systems.

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 955629.

FULLY DISINTEGRATED PRIVATE NETWORKS FOR 5G VERTICALS (FUDGE-5G)


FUDGE-5G will make a leap forward in realizing the notion of cloud-native 5G private networks by developing a further enhanced ServiceBased Architecture (eSBA) for both control plane and user plane with “decomposed” players of the ecosystem divided into: New Radio (NR) access network infrastructure provider, eSBA platform provider, mobile 5G Core (5GC) provider, vertical application orchestration provider and vertical service provider. The forward-looking FUDGE-5G architecture will also feature “allEthernet” 5GLAN (Local Area Network), 5G-TSN (Time- Sensitive Networking), 5G-Multicast and intelligent vertical application orchestration features. The proposed framework enables highly customized cloud-native deployment of private 5G networks. FUDGE-5G will accelerate the (inevitable) shift to a fully software-based 5G core network by offering a disintegrated environment where components, both in control and user plane, can be deployed anywhere as micro-services (i.e., edge, on premises and cloud),being agnostic to the underlying infrastructure. This softwarization exposing 5G NR HW to third parties will enable the usage of off-the-shelf commodity HW to deliver additional cost savings, faster deployments and ultimately greater adoption for private networks. iTEAM is the coordinator of the project, and the leader of the media use case. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957242.

5G KEY TECHNOLOGY ENABLERS FOR EMERGING MEDIA CONTENT PRODUCTION SERVICES (5G-RECORDS)


5G-RECORDS aims to explore the opportunities which new 5G technology components - these include the core network (5GC), radio access network (RAN) and end devices - bring to the professional production of audiovisual content. The project targets the development, integration, validation and demonstration of 5G components for professional content production, as part of an overall ecosystem integrating a subset of 5G network functions. The project aims to use of 5G non-public networks (NPNs) as a way to bring these new 5G components to emerging markets and new market actors, while also addressing recent emerging remote and distributed production workflows where cloud technologies cooperate with 5G. 5G-RECORDS has considered 3 use cases to embrace some of the most challenging scenarios in the framework of professional content production: live audio production, a multi-camera wireless studio and live immersive media production. iTEAM is the coordinator of the project. This project has been H2020.   5G PPP

CLOUD ROBOTICS AND FACTORIES OF THE FUTURE – CROFT (PROMETEO/2020/040)


This project addresses the research required for the development of mobile robotics in the cloud based on 5th generation mobile networks for the future IoT revolution. Low latency, high capacity demands, and a large number of mobile wireless entities connected to the Internet will require a continuous Ultra Dense Network (UDN) that is likely to use mmW bands to support future factory wireless connectivity. The connection network must be multi-hop, with connectivity nodes moving throughout the factory, even with drones, to ensure line of sight conditions for successful mmW communication. The nodes can cooperate in the transmission/ reception of data in a centralized or distributed way. In addition, the design of the protocol, mainly speaking of the PHY and MAC procedures, will guarantee the minimum battery consumption of the communicating machines. The objective of the project is to research and optimize the operation of RAN architectures for 5G standards beyond NR phase 2, and to design reliable and realistic PHY and MAC procedures adapted to this new communication model composed of mesh networks and mobile nodes. The ultimate goal is to achieve an improvement in the latency, reliability, and capacity of the large number of robots, drones, droids and humans that will work together in the factory of the future. In this context, the new communication paradigm of mmW and continuous UDNs together with the use of multihop cellular communications play a transversal role. During the project, the performance of the systems will be evaluated, simulations, RF measurements, and experiments with a large number of devices will be performed to validate the design principles used. For this purpose, the VLC-CAMPUS-5G will be exploited. In addition, this project aims to attract the talent of women to the new job opportunities that 5G will generate. This project has been funded by the Prometeo 2020 grant from the Generalitat Valenciana to carry out R & D & I projects for research groups of excellence. consumption of the communicating machines.

2019

SMART MOBILITY, MEDIA AND E-HEALTH FOR TOURISTS AND CITIZENS (5G-TOURS)


5G-TOURS vision is to improve the life in the city for the citizens and tourists, making cities more attractive to visit, more efficient in terms of mobility, and safer for everybody. 5G-TOURS builds on three themes: the touristic city (Turin), the mobility efficient city (Athens), and the safe city (Rennes). iTEAM is involved in the touristic city where visitors of museums and outdoor attractions are provided with 5G-based applications to enhance their experience while visiting the city. This includes VR/AR applications to complement the physical visit with additional content, involving interactive tactile communications. The experience of the visitors is also enhanced with robot-assisted services, telepresence to allow for remote visits, as well as live events enabled by mobile communications such as multi-party concerts. iTEAM is the leader of the broadcast use case.

5G-TOURS is 5G-PPP Project European Commission Call H2020-ICT-2018-2020 Grant number 856950

5G FOR SMART MANUFACTURING (5G-SMART)


5G-SMART unlocks the value of 5G for smart manufacturing through demonstrating, validating and evaluating its potential in real manufacturing environments. 5G-SMART trials will test the most advanced 5G integrated manufacturing applications such as digital twin, industrial robotics and machine vision based remote operations. 5G-SMART will undertake the first ever evaluation of ElectroMagnetic Compatibility (EMC), channel measurements and co-existence between public and private industrial networks in real manufacturing environments easing the integration of 5G. The new 5G features, developed in 5G-SMART such as time synchronisation and positioning for manufacturing use cases represent a technological leap. 5G-SMART lead by Ericsson brings together a strong consortium of partners involved in every aspect of the manufacturing ecosystem. Prof. Jose F. Monserrat, member of the iTEAM, is the Innovation Manager of the Project.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 857008.
5G PPP