Proyectos de Investigación

2018

VLC-5G: CAMPO DE PRUEBAS PILOTO, DESARROLLO Y DEMOSTRACION DE TECNOLOGIAS MOVILES DE 5ª GENERACION (5G) (IDIFEDER/2018/030)


VLC-CAMPUS-5G is the project to launch a 5G technology wireless communications platform on the campus of the Universitat Politècnica de València, which supports the testing of new 5G services and equipment and promotes Valencia as a 5G city. The VLC-CAMPUS-5G project is aligned with the evolution of mobile networks towards 5G, which will bring important developments and improvements not only in terms of capacity, latency, connection density, quality, and user experience, but also in terms of flexibility, efficiency, scalability, and openness of the networks, which will allow offering new services. The deployment of the VLC-CAMPUS-5G testbed is based on the expansion of the current communications infrastructures of the UPV, by the acquisition of the necessary equipment for the emission and experimental tests of 5th generation mobile services. There is currently an ultra-dense network of femtocells configured within a private operating network, a 5G network core emulator, as well as software-configured radio units and various equipment and software licenses that together configure a network 5G laboratory. This project is co-financed by the European Union through the operational program of the European Regional Development Fund (FEDER) of the Comunitat Valenciana 2014-2020.

2017

2019

Applications and Fundamentals of Microresonator Frequency Combs (MICROCOMB) (MSCA-ITN-2018-ETN)

2019-2022

IP: Pascual Muñoz Muñoz. MICROCOMB is a collaborative research and training network, gathering together 17 European universities, research centers and industrial partners with complementary expertise on microresonator technology and the observation and exploitation of the microresonator frequency combs.  Microcombs are emerging as a disruptive technology for realizing precision metrology, frequency and waveform synthesis and optical processing of information on a chip-scale platform. A typical microcomb setting is a microring resonator evanescently coupled with a waveguide mode, which is pumped by a continuous wave laser by means of a non-linear process like four-wave mixing (Kerr nonlinearity). Applications of microcombs for processing information with terabit rates, take advantage of the smaller resonator length and therefore being compatible with higher data transmission rates and also of the broad spectral coverage extending over C, L and U optical transmission bands. Other applications are: astronomical research, molecular spectroscopy, arbitrary wave form generators and RF and THz signal processing and generation. Website: https://www.microcomb-eu.org/

2020

POLO TECNOLÓGICO UPVFAB

2020-2021

IP: Pascual Muñoz Muñoz: The new action continues the previous infrastructure project (“Micro-manufacturing for photonics, electronics and chemistry” GVA / IDIFEDER / 2018/042 (2018-2020). The infrastructure is at the class 100/10000 (ISO 5 / 7) 500 m2 micro-fabrication pilot line / clean room www.fab.upv.es). More specifically, it is intended to complement the installation with the following equipment: 1) (Deposition) Sputter for cylindrical samples, 2) (Attack) Wet banks and attack tanks for samples and wafers up to 6 inches, 3 ) (Attack) Extraction and neutralization systems for wet banks and attack tanks, 4) (Metrology) FTIR equipment with microscope for sample analysis. 5) (Post-process) Microscopic transfer equipment by priming chips from 2-4 inches wafers to 6 inches wafers. The general objective is to develop new technological processes in the work areas of the proposing groups (ITEAM, ITQ, CI2B), specifically: I) integrated photonics, II) integrated catalytic membranes and III) electro-chemical devices.

Plataforma Hibrida de Nitruro de Silicio para Circuitos Ópticos Integrados

2020-2030

Co-IPs: Pascual Muñoz Muñoz / Daniel Pastor Abellán: La fotónica integrada ha experimentado un crecimiento exponencial en los últimos 10 años, gracias la investigación, desarrollo y explotación comercial de tecnologías genéricas, que permiten en un único micro-chip, sistemas fotónicos complejos. Estas tecnologías cubren varias partes del espectro, en función de las propiedades de los materiales empleados en fabricación, para distintas aplicaciones, entre el visible (VIS), infrarrojo cercano (NIR) y medio (MIR). Sin embargo, no existe una plataforma tecnológica de banda ancha que permita guiar luz de todo el espectro, esto es VIS, NIR y MIR. Aun si existiese, el problema de hibridación con otras tecnologías activas, para poder incorporar fuentes y detectores de luz, tampoco estaría resuelto. Junto con los dos aspectos anteriores, la creciente complejidad de los circuitos ópticos integrados (PICs) requiere de métodos de caracterización avanzada, más allá de los tradicionales. En esta propuesta se plantea investigar y desarrollar tecnologías, procesos de fabricación y diseño, junto con los métodos de caracterización asociados, para avanzar en la resolución de estos tres desafíos: i) una plataforma pasiva de integración fotónica que cubra VIS, NIR y MIR, ii) métodos de caracterización avanzados y iii) los procesos de fabricación para hibridación de con tecnologías activas. La propuesta se construye sobre la trayectoria del grupo en investigación, desarrollo y transferencia de tecnología, y está apoyada por agentes del sector público y privado relacionados, e interesados en los resultados. El grupo posee también una trayectoria de formación de recursos humanos altamente especializados y transferencia al tejido empresarial de la fotónica en general, e integrada en particular.

 

2019

Risk-based Approaches to Good Environmental Status (RAGES)


Risk-based Approaches to Good Environmental Status (RAGES) is a two-year European project which aims to support the development and operational implementation of regional indicators, lists of elements and threshold values and integration rules for Good Environmental Status.  The RAGES project is comprised of a consortium made up of competent authorities from Ireland, France, Spain and Portugal with (regional and sub-regional) responsibility for the implementation of the Marine Strategy Framework Directive (MSFD) in the North East Atlantic region, comprising the Celtic Seas, Bay of Biscay and Iberian as well as Macronesian sub-regions and will work closely with the OSPAR commsision. The Signal Processing Group - Underwater Acoustic Lab of the iTEAM will work in the RAGES project both: developing machine learning algorithms for the detection of marine mammals and performing acoustic recording campaigns in the Bay of Biscay. The information obtained will be applied at a sub-regional scale to the analysis of energy and noise (Desciptor 11).  The findings and best practices will be used to recommend targets for these descriptors as well as to develop a transferrable Standard Operating Porcedure.

2015

2016

2014

2017