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Abstract

In this article part of the techniques and devel-
opments we are carrying out within the INCO2 
group are reported. Results follow the interdis-
ciplinary approach with which we tackle signal 
processing applications. Chosen case stud-
ies show different stages of development: We 
present algorithms already completed which 
are being used in practical applications as well 
as new ideas that may represent a starting point, 
and which are expected to deliver good results 
in a short and medium term.

Keywords: Multi-core/GPU Architectures, Struc-
tured linear systems, FFT, Convolution, MIMO de-
tection, LDPC codes, Array processing, Adaptive 
algorithms.

1. Introduction

INCO2 [1] is a group of excellence in the Comu-
nidad Valenciana (Spain), recognized as such by 
the local government through the PROMETEO 
2009/013 project award. The members of the 
INCO2 group address problems arising in Signal 
Processing applications from an interdisciplinary 
perspective, designing solutions based on high 
performance hardware and developing algorith-
mic techniques with a modern and advanced 
software conception. In [2], both the architec-
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tural design and programming models of cur-
rent general-purpose multi-core processors and 
graphics processors (GPU) were covered, with 
the goal of identifying their possibilities and 
impact on signal processing applications. Prob-
ably, the best form of appreciating the effect of 
these new architectures on signal processing is 
to analyze the performance attained by multi-
core/GPUs architectures in the solution of a vari-
ety of applications.  As a natural continuation of 
that work, in this paper we present several case 
studies that show how parallelization on multi-
core/many-core architectures can be applied to 
specific problems and the outcome of it.

The rest of the paper is organized as follows. In 
Section 2 we show how to parallelize a detection 
method for MIMO digital communications sys-
tems on multi-core architectures. An evaluation 
of several packages to compute the FFT is pre-
sented in Section 3. Section 4 is devoted to the 
solution of Toeplitz linear systems on GPU and 
the parallelization of a beamforming algorithm 
for microphone arrays in Section 5. In Section 
6 adaptive algorithms in digital signal process-
ing systems with parallel convex combinations 
are presented. We dedicate Section 7 to present 
two potencial applications to be developed in 
GPU in the near future by INCO2: Multichannel 
convolution and the decoding of LDPC codes.  
Finally some concluding remarks are reported in 
Section 8.
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in a multi-core cluster composed of  two PRIMER-
GY RXI600, each one with four Dual-Core Intel 
Itanium2 processors (1.4 GHz; 4 GB of shared 
RAM). The versions were tested with different 
problems, of increasing size (total number of 
nodes in the solution tree). The result is report-
ed in terms of speed-up, which is the ratio be-
tween the time obtained with p processors and 
the best execution time obtained using a single 
processor. Figure 1 shows the speed-up attained 
with the parallel version based on OpenMP.

For all the problems tested, the best speedup is 
achieved with six processsors: compared with 
the time consumed by the serial version (one 
processor), the execution time is reduced by a 
factor of 5. Of course, these results strongly de-
pend on the problem, and the results are com-
paratively better when the dimension of the 
problem is increased. Nevertheless, these results 
offer an idea of the possibilities of using parallel 
computing for this problem.

3. FFT on multi-core/many-core 
architectures

The discrete Fourier transform is one of the most 
important operations in Digital Signal Process-
ing. Given a vector x=[x…xn-1]

T its DFT is defined 
as the matrix-vector product: , where  

 and i2=-1. The DFT can be used, 
among others, to obtain the frequency spec-
trum of a signal.

In many applications, the cost of computing 
the DFT [11] is too high; this is the case, e.g., of 
real-time applications. In those cases, the fast 
Fourier transform (FFT) can alleviate this prob-
lem of calculating the DFT. In particular, given 
a vector of size n, the computational cost of the 
DFT is O(n2) flops (floating-point arithmetic op-
erations) while FFT requires only O(n log n) flops. 
In several experiments, we have evaluated some 
implementations of the FFT from different librar-
ies on two different parallel architectures based 
on a multi-core processor and a GPU (see Table 
1). Specifically, on the multi-core processor three 
libraries have been used: MKL (Intel), IPP (Intel) 

2. Direct search methods for 
MIMO Systems 

An emerging technology for communication is 
transmitting through many input and output 
systems, which are known as MIMO systems [3]. 
This technology provides, among other advan-
tages, an increase in the bandwidth and reliabil-
ity of communications [4]. In this section, we will 
focus on the efficient detection of digital sym-
bols transmitted through a MIMO system.

A wireless MIMO communication can be mod-
eled by a system composed of M transmitting 
antennas and N receiving antennas. A complex 
signal s=[s0 ,…sM-1]

T , s ϵ CM is sent, where the real 
and imaginary parts of each component belong 
to a discrete and finite set A (the constellation or 
alphabet), and a signal  x ∈ CN  is received. Sig-
nal x is a linear combination of the transmitted 
signal s, perturbed with additive white Gaus-
sian noise v ∈ CN; therefore, x can be written 
as x = H s + v, where the entries of the NxM  
(channel) matrix H are complex. The optimal or 
maximum-likelihood (ML) detection of the sent 
signal means that, for each signal, the following 
discrete minimization problem must be solved: 
mins || x-H s||2. Further details about MIMO detec-
tion can be found in [4].

When the dimensions of the problem and/or the 
size of the constellation grow, the computation 
of the optimal solution becomes very expensive 
[5]. In response to this, many heuristic techniques 
have been examined as alternatives. Our research 
group has studied the application of parallel 
computing to the different existing solvers. An 
approach is to use standard discrete minimiza-
tion algorithms and adapt them to the problem, 
such as the Direct Search methods, which were 
first described in [6] and more recently revisited 
in [7]. These methods can be parallelized with 
two different goals in mind; following a com-
mon practice, we could use parallelism to reduce 
the computing time; alternatively, it can also be 
used to increase the probability of obtaining 
the optimal (ML) solution. This can be achieved 
by performing several searches in parallel using 
different initial points.  We have adapted these 
methods to the MIMO detection problem, first 
with sequential versions and later with parallel 
versions of the sequential algorithms [8].

One of the most popular techniques for MIMO 
decoding is the Sphere Decoding algorithm [9]. 
This algorithm restricts the search to a sphere 
centered in the received signal x and with a 
given radius; it can be described as a search in a 
tree of solutions. The parallelism in this case can 
be exploited by assigning different branches of 
the tree to different processors. Several versions 
of this algorithm have been parallelized by the 
authors, using different parallel schemes, and 
different technologies (OpenMP and a hybrid 
method) [10]. The different versions were tested 

  Figure 1. Speed-up obtained using OpenMP.
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and FFTW (Massachusetts Institute of Technol-
ogy). On the GPU, CUFFT (nVIDIA) and Volkov (an 
implementation coded by Vasily Volkov) have 
been evaluated, see Table 2.

The experiments comprised the computation 
of several FFT of a vector using single-precision 
arithmetic, with the size of the input vector vary-
ing from 8 to 8200 elements. The number of FFT 
computed in each experiment is proportional 
to the vector size, so the product between the 
vector size and the number of executions equals 
8388608 (this number ensures more than 1000 
executions with the biggest vector size used 
and is also a multiple of all the employed vec-
tor sizes). The performance (in terms of GFLOPS 
or 1015 flops per second) is computed using the 
same reference cost 5nlog2 n  for all experiments. 

Figure 2 shows the performance obtained when 
the number of elements of the input vector is a 

power of two. As it can be seen, the performance 
of the kernels that operate on the GPU is noto-
riously higher than that of the multi-core coun-
terparts. Other experiments were carried out for 
instance taking a prime number of elements of 
the input vector. In this case, all the FFT kernels 
suffered an important degradation, with the 
decrease being especially important for CUFFT, 
which yields the lowest-performance. 

A preliminary conclusion from this study is that 
the FFT kernels in current libraries for the GPU 
clearly outperform those in libraries for the multi-
core processors. However, much work remains to 
be done to fully optimize both types of kernels. 

4. Solving structured 
systems on GPUs 

Structured linear systems can be defined as: 
      

TX=B
[1]

where T∈= nxn is a structured matrix, B∈= nxnrhs 
contains the right-hand side vector, and X∈= nxn 
is the sought-after solution vector. 

Some structured matrices, like Toeplitz, are char-
acterized by an external structure (e.g., in the 
Toeplitz matrices all elements along diagonals 
are equal). Hankel and Vandermonde are also 
examples of structured matrices with an explicit 
external structure. The field of structured matri-
ces also includes some classes with non-external 
structure, like the inverse of a Toeplitz matrix 
or Cauchy-like matrices. A formal definition of 
structured matrices is based on the property 
known as displacement structure [12], which 
basically sets that there exist one (symmetric 
case) or two (non-symmetric case) matrices of 
nxr (r<<n) containing the same information as 
an nxn structured matrix. 

Structured matrices appear in a wide range of 
engineering applications as, i.e., digital signal 
processing. Other appealing feature of struc-
tured matrices deals with the existence of fast al-
gorithms which allows to solve problem (1) with 
an order of magnitude lower than classical algo-
rithms that does not exploit its special structure.

We will describe next our approach to solve 
problem (1) where T is a symmetric Toeplitz ma-
trix using a GPU. To tackle this problem, we first 
searched for algorithms with an intrinsic paral-
lelism, which allowed the use of a large number 
of threads working concurrently on the problem. 
One such an algorithm performs the triangular 
decomposition (LDLT, for L lower triangular 
and D diagonal) of symmetric Cauchy-like matri-
ces. This algorithm works on a so called genera-
tor matrix G∈= nx2 , with the property that, with 
only two columns, it contains all the information 
of a given symmetric Cauchy-like matrix. The fol-
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Regarding the system of Figure 4, the problem is 
how to recover s1(k) or s2(k) by means of the sig-
nals recorded at the microphones. The approach 
taken herein makes use of signal processing al-
gorithms to design the broadband beamformers 
(filters g1 , g2 and g1  in Figure 4), once all the room 
channel responses (hnm  in Figure 4) are known. 
This problem is commonly known as signal de-
convolution, and plays an important role in tel-
econferencing where the speech of interest has 
to be extracted from the observations of the mi-
crophone array but is usually corrupted by noise, 
room reverberation and other interfering sources.

According to Figure 4, the output of the n-th mi-
crophone is given by:

             
                                            

[3]

where n=1,2,…, N, being N the number of micro-
phones and M the number of source signals, that 
is equal to the number of loudspeakers in Figure 

lowing is a scheme of the algorithm: 

for j=1,n
 for i=j+1, n
  Use ith row of G to compute li,j 
entry.
 end for
end for

The outer loop processes the columns of L while 
the inner loop inspects the i-th row of the j-th 
column. All the entries of a given column j (inner 
loop) can be computed concurrently. This moti-
vates the use of a linear array of blocks of threads 
to compute all these entries in parallel on a GPU. 

The solution of (1) using the previous algorithm 
is carried out by transforming the Toeplitz ma-
trix T into a Cauchy-like one. This is performed 
by means of the Discrete Sine Transform, an FFT-
related transformation that is carried out first in 
the CPU. When applied to symmetric Toeplitz 
matrices, this transform exhibits the property 
that it results into two independent Cauchy-like 
matrices of order n/2. This benefit allows the 
solution of larger problems, by solving the two 
independent systems in turns, overcoming the 
memory limits of GPU (4GB). Furthermore, it also 
enables the use of two GPUs in the solution of a 
single symmetric Toeplitz problem.

Figure 3 shows the performance improvement 
obtained by using one GPU over the CPU to 
solve problem (1) with different numbers of in-
dependent vectors.

5. GPU array processing 

A microphone array is a set of several micro-
phones distributed in the space forming a spe-
cific pattern. Since a few decades ago, beam-
forming algorithms for microphone arrays have 
been studied and developed in order to improve 
the Signal-to-Noise Ratio (SNR) of the received 
signals, or to recover spatially separated signals 
considering their different Directions of Arrival 
(DoA) [13]. Nevertheless, one of their main limi-
tations has been their high computational cost in 
practical acoustic environments where real-time 
sound processing must be carried out. Therefore 
we propose in this section an approach to the 
parallelization of some computations that are 
common to different beamforming designs.

System Model
Consider the system of Figure 4 where two loud-
speakers are emitting two independent signals, 
s1(k) and s2(k) , respectively, where k denotes the 
discrete time instant. At the other part of the 
room, three microphones are recording the mix 
of the two signals plus noise. This system can be 
modeled as a multichannel system with 2 inputs 
(loudspeakers) and 3 outputs (microphones), 
and the generalization to a multiple-input mul-
tiple-output (MIMO) system can be easily done. 

  Figure 3. GPU vs. CPU speed-up for a multiple right-hand side vectors systems.

 Figure 4. System model for 2 loudspeakers (inputs) and 3 microphones 
(outputs).

  Figure 2. Relation between GFlops and Vector Size when the number of ele-
ments of the input vector is a power of two.

 Table 1. Characteristics of the arquitectures used 
in the experiments.

 Table 2. Libraries evaluated in the experiments.

Processors #cores Frequency 
(GHz)

Intel Xeon 
Quadcore E5405 8 2.33

NVIDIA 
Tesla C1060 240 1.3

Library Version Architecture

FFTW3 3.2.1 Multi-core

Intel MKL 10.1 Multi-core

Intel IPP 6.0.2.076 Multi-core

nvidia CUFFT 2.3 GPU

Volkov GPU
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4. Lh is the length of the longest room impulse 
response of all acustic channels hnm. The noise 
contribution has not been considered for sake of 
clarity. 

This signal model can be rewritten in vector/
matrix form as: xn(k) = Hs (k)  where xn (k) is a 
column vector and vector s(k) and matrix H 
are defined as , where 
sm(k)=[sm (k)  sm (k-1) … sm (k-Ln+1)]T , and H=[H1 
H2 H3]

T , where  , and hnm=[hnm,o hnm,1 

… hnm,Lh-1]
T for n=1,2,3  and m=1,2;  (·)T  denotes 

the transpose of a vector or a matrix and Lh is the 
length of the longest channel impulse response. 
Once the recorded signals xn(k) have been mod-
eled, the broadband beamformers (filters g) have 
to be designed and calculated. Benesty et al. [14] 
present an excellent state-of-the-art of the main 
algorithms used in audio applications. Some of 
them make use of the channel matrix H exclu-
sively and calculate filters gi based on its inverse 
(or pseudo-inverse), whereas other methods 
take also into account the correlation matrix of 
the recorded signals. Under perfect estimation 
of channel impulse responses, both types of fil-
ters show similar good performance, but in prac-
tical experiments, where the hnm’s are estimated 
under some uncertainties, filters based on the 
estimated correlation matrix outperforms those 
based on the channel inversion.

The estimated correlation matrix of spatially 
sampled signals, xn(k), is commonly known in 
the literature as the Sample Correlation Matrix 
(SCM), and its expression is given by: 

[4]

where .

Regarding the dimensions of SCM, [3Lg x 3Lg], 
Lg depends on the length of the room impulse 

response Lh and is usually greater than 150. Con-
sidering that (3) has to be recalculated at short 
time intervals due to the non-stationary nature 
of sound signals, and that N ≥ 3Lg to assure that 

 is full-rank and invertible, then an efficient par-
allelization of the computation in (4) is required. 
Three different implementations have been con-
sidered in order to obtain the matrix correlation 
as fast as possible. In one hand the sequential 
implementation and in the other hand two dif-
ferent parallel implementations: one in multiple 
cores of CPU and the other in the GPUs. 

The sequential implementation
The sequential implementation of the Sample 
Correlation Matrix of (3) is iteratively done by a 
‘for’ loop which calculates one vector outer mul-
tiplication and one matrix sum correspondent 
to index k-th of the total sum at each iteration. 
Its implementation can be seen schematically 
in Figure 5, where vector x(k)  is split in smaller 
overlapping vectors of 3Lg length each.

Parallel implementations of the Sample Cor-
relation Matrix of (3)

1)  Parallelization in CPU multi-core:
In this case the parallelization consists in di-
viding the sequential tasks described above in 
different CPU cores. To achieve that the Matlab 
toolbox for parallel computing has been used, 
more specifically the functions matlabpool 
and spmd [15].

2) Parallelization on GPU:
In this case, the parallelization is performed at 
a lower level than in CPU. For this purpose, the 
software interface called Jacket [16], which 
allows running code in the GPU through Mat-
lab, has been tested. The following steps have 
been taken:

•	 First, to send microphone array signals 
x(k) to the GPU using Jacket function 
gdouble().

•	 Second, to parallelize (3) so no iteration of 
‘for’ loop must depend on a previous result. 
Then parallelization of the ‘for’ loop is done 
using the Jacket function gfor().

The step 2 has been carried out splitting each 
vector xn(k) of (4) in basic blocks of variable 
length Z. The performed parallelization in GPU 
for Z=Lg/2 can be seen in Figure 6. Let us denote  

 as the i-th block. Considering that xn(k) 
has length NLg, the number of available blocks 

. Therefore, the single 
outer product  of (4) is now com-
puted in parallel at the GPU though (2N)2

 
outer 

products .

Figure 6 shows the case for N=3 microphones, 
so there are 2N=6 basic blocks available, and 

 will be computed whith (2N)2 =36 
outer products in parallel.

 Table 3 Table of times used in calculating the Sample Correlation Matrix (SCM) of equation (4).

 Figure 6. Illustration of parallel method implemented on GPU. Figure 5. Illustration of parallel method implemented on CPU.
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relation must be incremented to reach the best 
time results. Otherwise, if we took the most effi-
cient case for each length of filters, Lg, it can be 
shown that the speed-up in all the cases is near 
to 4, which means a significant time saving. Same 
results of Table 3 are depicted in Figure 7, where 
the graph at right shows those methods whose 
computation times are below 2 seconds. It should 
be noted that GPU outperforms sequential and 
multi-core implementations in all cases.

Finally it should be noted that, considering the 
duration of the recorded signals, 4 seconds, a de-
lay in calculating the matrix correlation of one to 
three tenth of a second is attainable for real-time 
applications.

6. Adaptive algorithms with 
parallel combinations on 

multi-core platforms

During last years, adaptive systems [17] have 
been the objective of many studies due to their 

Three different lengths of basic blocks have been 
tested in GPU: Z=Lg, Z=Lg/2 and Z=Lg/3, which 
results in N2, (2N)2 

 
and (3N)2 outer products of 

block vectors . For the system depicted in 
Figure 4 whith N=3, the different sizes of Z give a 
parallelization of 9, 36 and 81 independent outer 
products for step 2, respectively.

Testing Results
Sequential implementation and both paral-
lel implementations explained above for 3 re-
corded signals xn(k) at sampling frequency of 
11 kHz have been tested with an i7 CPU of Intel 
and a NVIDIA GPX285 GPU. Results obtained for 
signals of duration 4 seconds (44 ksamples) can 
be seen in Table 3. The CPU parallel method has 
been carried out with 3 cores, it has been proved 
that for this kind of computation it was the best 
configuration. As we can see in Table 3, the par-
allel implementation with multiples cores of a 
CPU only obtain speed up greater than 1 when 
Lg ≤ 210 comparing to sequential implementa-
tion, achieving almost double velocity in the 
best case of Lg=110. An explanation for this low 
performance may be that too much time is lost 
distributing tasks into the different cores of the 
CPU, whereas the code to be distributed consists 
only in a few lines. Moreover, results of Table 3 
show that computational time grows exponen-
tially when Lg exeeds Lg=210; we suppose that 
in this cases, length of filters gi is very large 
and buffers memory of the cores collapses: big 
amounts of data are replicated in all buffers, and 
that makes such a significant time increase. For 
Lg>300, Matlab returns a memory error because 
there is not enough memory to allocate matrices 
with such big dimensions.

Regarding GPU implementation, Jacket performs 
with matrix of maximum 65.536 elements. As we 
see in figure 6, dimensions of SCM depends on Lg, 
so working whithin GPU configuration divided 
in 9 parts, when Lg=260 dimensions of SCM ex-
ceeds 65.536 elements, so Jacket program returns 
a memory error. To solve this problem we divide 
the calculation of SCM in more number of parts, 
and as table 3 show, as Lg grows, the number of 
parts used in the calculation of the matrix cor-
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as we can read in [28], [29] and [30] using CUDA 
and other GPU programming tools.

LDPC codes can be represented graphically by a 
Tanner graph [31] (an undirected bipartite graph 
with variable nodes, ci, and check nodes, fi). An 
example is shown in Figure 10, that corresponds 
with the parity-check matrix on its left H:

LDPC decoders are based on variations of belief 
propagation, sum-product or message pass-
ing algorithms. In any of  these algorithmic de-
nominations, information flows to/from variable 
nodes and from/to check nodes until the algo-
rithm converges to a stable state, finding the 
most likelihood transmitted codeword.  An easy 
example can be observed in the bit flipping al-
gorithm (hard decision decoding). The iterations 
are divided in two dependent steps:

1. Each variable node sends the majority vot-
ed bit to all its connected check nodes (at 
the beginning, the only information avail-
able is the received bit)

2. Each check node estimates each connected 
variable node bit as the parity-check matrix 
dictates (using the estimations of the rests of 
the connected variable nodes and excluding 
the value that is estimating) and send this 
information to this connected variable node.

7.  Future Prospects

In this section, we present two potential applica-
tions in Signal Processing which are focused on 
the implementation of the multichannel convo-
lution and the decoding of LDPC codes using the 
capabilities of GPU computing. 

Multichannel convolution
It can be shown that the computation of the 
convolution operation consists of several scalar 
multiply and add operations [22], where a certain 
parallelism can be identified. In order to compute 
the convolution, the architecture of the GPUs al-
lows different levels of parallelism. At a first level, 
a single convolution operation of two signals can 
be efficiently implemented in parallel inside a 
GPU. The second level of parallelism allows carry-
ing out different convolutions of different chan-
nels parallelly. Note that, obviously, the benefits 
of using a GPU increase when both levels of par-
allelism are exploited simultaneously. 

The possibilities that GPUs offer are varied. How-
ever, the main challenge when implementing an 
algorithm on GPU relies on adapting the resourc-
es of the GPU to obtain the best performance de-
pending on the properties of the signals (mono-
channel, multichannel, etc.) and, of course, the 
type of processing that wants to be carried out: 
Convolution of all the signals either by the same 
h(k) or with different hi(k) with i∈[0…n-1], convo-
lution of some signals by h1(k) and others by h2(k) 
and all of them at the same time, etc. 

Recently, the new CUDA toolkit 3.0 lets use CUFFT 
[11] with the property concurrent copy and ex-
ecution and therefore, implementing real-time 
applications where the latency of transfering the 
samples from the CPU to the GPU for processing 
and vice versa overlapped by computation.

LDPC Codes on GPU
Low-Density Parity-Check codes (LDPC codes) 
are linear block channel codes for error con-
trol coding with a sparse parity-check matrix (a 
matrix that contains few ones in comparison to 
the amount of zeroes).  They have recently been 
adopted by several data communication stand-
ards such as DVB-S2 and WiMax. The concept of 
LDPC coding was first developed by Robert G. 
Gallager in his doctoral dissertation at the MIT 
in the begining of sixties [23] but quickly forgot-
ten due to its impractical implementation at that 
moment and the introduction of Reed-Solomon 
codes. They were rediscovered by MacKay and 
Neal in 1996 [24].

These codes provide a performance very close to 
the Shannon capacity limit of the channel, low 
error floor, and linear time complexity for decod-
ing (lower than turbocodes). We can find simple 
tutorials to understand the basics of these kind 
of codes in [25], [26], and software to test them 
in [27]. LDPC codes are inherently suited for par-
allel hardware and software implementations 

multiple applications in digital processing sys-
tems. Applications like channel identification, 
channel equalization or channel inversion, used 
for sound or communications systems, echo 
cancellation, noise cancellation, among others, 
are based on adaptive systems. There is a big 
amount of adaptive algorithms in order to con-
trol adaptive systems like: LMS, RLS, FTF, AP, etc. 
A complete description of each can be found in 
[18], whose conclusion says that none of them is 
globally better than the others, but also, the al-
gorithms which achieve the best performances 
are the ones which have greater computational 
cost. Also, the ones which have good behavior in 
a permanent regime are worse than others if we 
compare the convergence speed. This is the rea-
son why there are different adaptive strategies. 
In order to improve the performance of differ-
ent adaptive algorithms, new parallel combining 
strategies have appeared, like convex [19]. These 
strategies allow to combine the strengths of two 
adaptive algorithms which present complemen-
tary features (for instance, one with fast conver-
gence and the other with low residual error level 
in permanent regime), achieving the combina-
tion of the best performances from each one in a 
separated way. As it can be checked in [20], using 
this strategy is possible to achieve both objec-
tives at the same time, high convergence speed 
and low residual error level in permanent regime. 
This kind of strategies can be used successfully 
in active noise control applications [21], obtain-
ing a really good performance: fast convergence 

and low residual noise level. However, this bet-
ter behavior appears at the expense of doubling 
the computational cost, since two algorithms 
have to be executed at the same time, in paral-
lel. The parallel nature of this structure allows 
the distribution of the computation within paral-
lel hardware like the multi-core systems, where 
the computational load can be easily dealed out 
among different cores and thus the execution 
time reduced. Therefore, the adaptive algorithm 
could be used in systems working at a higher 
sampling rate. The computations needed could 
be carried out in two kernels, using a third kernel 
to combine both algorithms, or using one of the 
first kernels to combine the signals if there are 
only two kernels. Next, Figure 8 shows the block 
diagram of the convex structure executed over a 
multi-core platform.

As it can be checked in Figure 8, apart from the 
convex combinations, the rest can be executed 
in a parallel way. Therefore, the execution time 
has been reduced to the time that a single filters 
needs to carry out the computations. In other 
words, thank of this structure and the use of two 
kernels, the time required by the process be-
comes the time needed by one single kernel, in-
stead of the double time required by a sequential 
implementation using monocore structures. Fig-
ure 9 exhibits the algorithm runtime per iteration 
and the comparison with the sequential version 
executed in a single core system. It shows the re-
lation between the execution time and the length 
of the adaptive filters used in the convex struc-
ture when LMS algorithm is used as a controller 
of the adaptative filters. This test has been carried 
out on an Intel Core i7 CPU 920 @ 2.67GHz, and 
the algorithm was run in a Matlab R2009b plat-
form using Parallel Computing Toolbox V4.2.

As it can be seen in Figure 9, the reduction of the 
algorithm runtime using a platform of two ker-
nels is really significant. This structure only needs 
half runtime of the sequential one. The most im-
portant conclusion is that it will be possible to 
work with higher sampling frequencies in order 
to deal with signals with higher bandwidth, or 
just to have adaptive algorithms which require 
high computational load needing less time to 
carry out this operation.

 Figure 7. Evolution of computational time when Lg grows.

 Figure 8. Scheme of the multi-core convex combination.

 Figure 9. Runtime per iteration for multi-core 
system and simple core system.

 Figure 10. Tanner graph of a linear block code parity-check matrix H.

 Figure 11. Computation and message passing 
in parallel algorithm.
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These steps are executed iteratively until the es-
timated word is a codeword. Better results are 
obtained when soft decision is used [32]. It can 
be observed that the computations within the 
check nodes and within the variable nodes are 
alternated and interdependent in time, so they 
must be executed one after another because of 
their inherent sequentiallity. The computations 
in every check node are independent, so they 
are perfectly parallelizable; the same happens 
with the variable nodes computations. Within a 
check node, it must be computed a different re-
sult to every variable node that is connected to it. 
Something similar is observed regarding to the 
variable node computations. Figure 11 shows the 
dependency graph of the parallel algorithm.

We are focusing our implementations on con-
centrating the operations within every node 
because each result in a node shares nearly all 
the multiplication factors that it contains. An-
other important question is how the accesses to 
the global and shared memory are arranged in 
order to make a coalesced access and to avoid 
conflicts in the memory banks. This will ensure a 
good speedup in a real time environment.

9. Conclusions 

Throughout this article it has become obvious 
the impact of new multi-core / GPU architectures 
in the field of signal processing. Among the most 
widespread options in signal processing, these 
new architectures will be likely present in the next 
few years. However, it is also very likely that FPGA 
devices keep a good share of the market, as they 
cover a large part of very specific applications.

The purpose of this work was to serve as a show-
case of different signal processing applications 
in which new Multi-core/GPU architectures can 
be competitive. Different applications, in which 
researchers of INCO2 Group are working, have 
been used as case studies. The aim of this group 
is precisely the application of high performance 
computing and next-generation parallel archi-
tectures (particularly multi-cores and GPUs) in 
the solution of problems in signal processing. 
We believe this option is a sure bet in one of the 
most promising areas of current technology, in 
general, and the Information Technology area, in 
particular, where the duo computer-communi-
cations can not be dissociated.
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