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Abstract

This paper presents a computer-aided optimisa-
tion process for operating UMTS network. First, 
the simulation-optimisation tool is analysed. 
Its main characteristic is the use of real meas-
urements obtained directly from the network 
to adjust the simulation models. Besides, two 
different mathematical algorithms are used to 
find the optimised configuration of a specific 
set of the network parameters. Then, an expert 
system based on artificial neural networks is de-
scribed. Its basic functioning depends upon the 
inputs provided by reputed optimisation engi-
neers from the company Ingenia Telecom, S.L. 
The results show the better performance of the 
Simulated Annealing optimisation algorithm to 
get a valid solution and the effectiveness of the 
proposed expert system to assist in the decision. 
Given a real network scenario the computer-aid-
ed optimisation tool achieves a 98% improve-
ment in terms of the reduction of non-served 
traffic.

Keywords Expert System, Optimisation, UMTS, 
Simulation, Call Tracing

1. Introduction

An important constraint of the 3G technolo-
gies is the high dependence of the radio access 
method, WCDMA (Wideband Code Division Mul-
tiple Access), on the cell interference level [1]. 
For this reason, in order to satisfy the required 
quality of service, it is basic to periodically exe-
cute system optimisation methods to guarantee 
the minimisation of the interference level.

Expert Systems for the Automatic 
Optimisation of 3G Networks

In an operating UMTS network, continuous 
changes in the spatial-temporal traffic distribu-
tion and the quality of service requirements oc-
cur. This variability also affects the interference 
distribution and makes necessary to continuous-
ly reconfigure the network parameters in order 
to keep the interference as low as possible.

The system optimisation process consists of the 
network data collection, the problem detection 
after analysing the collected data, and the deci-
sion-making to solve the existing problems. Due 
to the fact that the effectiveness of the decisions 
making will be highly dependent on the experi-
ence of the radio engineering team responsible 
of this step, it is necessary to define the proce-
dures to evaluate, quantify and discriminate be-
tween the different change decisions available. 
The logical evolution of the UMTS network op-
timisation processes is based on the avoidance 
of the high dependence on the human team by 
designing an automatic decision mechanism ca-
pable of determining the best configuration of 
the main network parameters [2].

There is a lot of documentation regarding auto-
optimisation of mobile communication net-
works (e.g. [2]-[4]). Besides, there are also several 
European research projects that have dealt with 
this problem. For example, the IST Momentum 
project, finalised in 2003, has treated this issue 
widely [5]. Nowadays, it is worth mentioning 
the current activity of the IST SOCRATES project 
[6] (Self-Optimisation and self-ConfiguRATion 
in wirelESs networks), that has among its main 
research objectives the cognitive and auto-opti-
mising networks.
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error of 100m. The resulting traffic density matrix 
modifies the cost function and, thus, affects the 
decision made by the optimisation algorithm, 
giving higher priority to those areas with higher 
traffic densities.

After the optimisation tool block there is a deci-
sion part comprising three different elements. 
The first one is an expert system based on neural 
networks that executes a continuous supervised 
learning. The current system state is introduced 
as neuron inputs and the output reflects the de-
cision, for example, increase the antenna tilt or 
the common channel power. Each time a reput-
ed engineer completes an optimisation process 
their outputs are used to train the expert system. 
This knowledge will be used by other engineers 
taking advantage of the system know-how. The 
outcomes of the expert system are combined 
with the simulation outputs in the artificial intel-
ligence (AI) decision block. If both inputs agree 
on the decision the CAO tool reports the decision 
and the exact value the simulation suggest. On 
the contrary, the probabilistic output of the ex-
pert system is directly transferred indicating the 
level of likelihood of each decision. The last block 
represents the radio engineer task of choosing 
whether to apply directly the parameter configu-
ration derived by the optimisation tool or rather 
to use it as a guideline to make gradual and con-
servative changes in the network, while monitor-
ing the effects of such modifications.

3. The Optimisation Tool

3.1 Data Analysis
The analysis block processes the input data of 
the CAO in order to prepare useful information 
for the subsequent optimisation process. The 
CAO input data are collected by a monitoring 
tool integrated in a network analysis and optimi-
sation system developed by Ingenia Telecom S.L, 
NeO UMTS. This system gathers data through 
call-tracing (monitoring calls in the network), 
probes (capturing data from the Iu and Iub inter-
faces) and drive testing. The source of informa-
tion used by NeO comes from the main signal-
ling messages of the 3GPP standard protocols: 
RRC, NBAP, RNSAP and RANAP. NeO also supplies 
information about the network topology, includ-
ing location of the cells and initial configuration 
of the target parameters of the optimisation.

The main task of the analysis block is the locali-
sation of a set of calls made in the area where 
the optimisation process is going to be applied. 
This task is done using a proprietary localisation 
algorithm that has proven a very good precision 
for the purpose of the optimisation process. Ba-
sically, this algorithm uses the Physical Random 
Access Channel (PRACH) propagation delay 
between the User Equipment (UE) and the cell 
where the call is started and the Received Sig-
nal Code Power (RSCP) measures contained in 
the measurement reports –sent by the UE to the 

network during the call – to estimate the initial 
localisation of the UE through geometric calcu-
lations.

The overall process comprises other more so-
phisticated steps to increase the final accuracy. 
For instance, sliding window pre-processing of 
the values in the measurement reports, consid-
eration of different propagation loss models de-
pending on the area, detection of changes in the 
trajectory direction or trajectory approximation 
are some of the mechanisms applied in this proc-
ess. Figure 2 shows an example of the potential 
of the implemented localisation algorithm. The 
blue line is the real path followed by the user 
during the call, the green line is the first output 
of the localisation algorithm and the white line 
the final approximation of the UE trajectory.

3.2 Simulation fitted to real measure-
ments
Once the localisation results are available after 
the execution of the data analysis, it is possible 
to use these results to generate useful informa-
tion for the optimisation process. The simulation 
block of the optimisation tool assists the optimi-
sation subsystem in the search of the optimal so-
lution using real traffic density and propagation 
losses maps. This section describes how these 
two types of maps are derived.

It is worth recalling that the analysis block has 
previously processed all the measurement re-
ports that users submit to the network, mapping 
each measurements report with the user geo-
graphic location. The traffic density is calculated 
based on these real measurements instead of 
using predictions. Considering the target area 
map as a grid, traffic density in each position or 
element in the grid is computed just counting 
the number of localisation points situated in that 
specific square area.

The 
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to improve the 
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network

  Figure 2. Example of the localisation algorithm output

ess. Then, Section 3 analyses the simulation set 
up and the subsequent optimisation. The expert 
system is explained in Section 4 whereas Section 
5 presents some illustrating results. Finally, main 
conclusions are drawn in Section 6.

2. Artificial Intelligence Applied 
to the  Optimisation Loop

The objective of the proposed CAO process is to 
improve the performance of an operating UMTS 
network by tuning some of its radio parameters. 
It is a cyclic process due to the fact that, after 
finding an optimised combination of the radio 
parameters and applying the changes to the net-
work, it is possible to execute the optimisation 
process again. Only applying a cyclic process the 
system configuration could be adjusted to the 
current radio access network conditions, as they 
are supposed to be continuously changing.

In this work the target optimisation parameters 
are the tilt and azimuth of the antennas and 
the power level of the common pilot channel 
(CPICH). These parameters are the most typically 
used in other works found in the literature relat-
ed to the auto-optimisation of the radio access 
network [2].

Figure 1 shows the block diagram of the pro-
posed computer-aided optimisation process. 
The central element of the diagram is the opti-
misation tool, which is able to find the optimum 
configuration for the radio parameters starting 
from the input data. This tool comprises basically 
three elements: (1) the analysis block, responsi-
ble for calculating (a) the user traffic density 
matrix and (b) the calibrated propagation loss 
matrices from each transmitter by using data 
collected from a call-tracing tool that monitors 
the Radio Network Controller (RNC) activity. This 
mechanism is described later on, in section 2.1. 
(2) the optimisation block, which finds the best 
combination of parameters given a maximum 
response time; and (3) the simulation block, 
which supports the optimisation block and pro-
vides the resulting propagation loss matrix and 
interferences of every cell that is modified in the 
optimum search process.

The input data of the optimisation tool encom-
pass: the actual configuration of the radio pa-
rameters in the operating network, the list of 
target cells to optimise and their parameters 
subject to change, the possible set of values of 
these parameters and some information and sta-
tistics about user calls and traffic collected dur-
ing a certain time period. The purpose of having 
the data of the user calls is to be able to generate 
(a) and (b) from the space distribution of the calls 
made in the scenario and their corresponding 
propagation losses. To this end, a user location 
algorithm has been employed. This algorithm 
uses the actual information available in the RNC 
to calculate the user trajectory with an average 

The auto-optimisation mechanisms start not 
only from the specification of clear improvement 
objectives but also from the identification of a 
set of target parameters to optimise. Usually, the 
main target parameters for optimisation in UMTS 
networks are the location of the base stations, 
the antenna configuration, the pilot channels 
power level, the handover parameters and the 
definition of the neighbour lists (see, e.g., [2][3]).

The main handicap of the classical computer-
aided optimisation process based on simulation 
and prediction is that this method has been able 
neither to substitute well-trained optimisation 
engineers nor to approximate predictions to 
reality. However this is not a reason to abandon 
this idea since not all optimisation engineers 
have the same skills and the final result is highly 
dependent upon their knowledge and experi-
ence. There is still an increasing need to assist en-
gineers in the decision making process but cur-
rent research trends point to the usage of Expert 
Systems that capture the know-how of highly-
skilled engineers [7]. Moreover, the knowledge 
of optimisation is continuously evolving with 
the network updates and hence the Expert Sys-
tem must be refreshing its learning process with 
new incomes from the experts.

This document proposes a computer-aided op-
timisation (CAO) process that jointly integrates 
call-tracing, simulation fitted to actual measure-
ments, optimisation search and expert systems 
based on neural networks. This practical experi-
ence has been carried out by Ingenia Telecom 
S.L. Company in collaboration with the Univer-
sidad Politécnica de Valencia, showing a huge 
impact of the final solution on the work flow of 
this optimisation company. Specifically, this pa-
per first describes in Section 2 the current status 
of the optimisation of UMTS networks and how 
artificial intelligence can be included in the proc-
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  Figure 1. CAO process
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is made by controlling the frequency of the es-
cape movements by means of a probability func-
tion, which provides lower movement probabil-
ity to worse solutions as the search progresses. 
This probability is controlled by a temperature 
parameter, T, which initially has a high value and 
is gradually reduced. Specifically, the expression 
that represents the acceptance probability of a 
configuration change is:

		  [1]

Particle Swarm Optimisation
Particle Swarm Optimisation (PSO) is inspired 
by the social behaviour of bird flocking or fish 
schooling. The objective of the algorithm is to 
solve a problem in terms of maximising or mini-
mising a fitness function. A population of indi-
viduals is defined initially, representing different 
random candidate solutions in the search space. 
The algorithm consists of an iterative process 
that varies these individuals depending on the 
fitness function performance of the current can-
didate solution and on the local and overall best 
performance. Each individual keeps track of its 
historically best candidate solution (local best) 
and a social network is defined so that every 
individual knows the best candidate solution 
among all local bests (global best).

4. The Expert System

The aim of expert systems is to capture the 
knowledge provided by a human expert and in-
troduce it into a computer. The final system will 
act with enough intelligence as to solve a spe-
cific problem that otherwise should have been 
tackled by the expert. Of course, the expert sys-
tem cannot infer this knowledge without the 
supervision of the human expert and machine 
learning must be used. In this paper, our ma-
chine learning block is a back-propagation artifi-
cial neural network trained directly from a set of 
inputs and the corresponding outputs provided 
by a set of reputed engineers.

The expert system analyses one by one all cells 
in the scenario. The list of inputs was established 
according to the information that experts con-
sult to make the final decision. For any Cell Un-
der Study (CUS) it is important to know its cur-
rent configuration and its coverage distribution, 
which is provided by the call tracing tool. All the 
interferers of the CUS are sorted by level of over-
lap, and their main parameters are also inserted 
in the expert system. It is worth highlighting the 
relative azimuth that measures clockwise the 
beam pointing of both cells. Finally, output tar-
gets are the same as for the optimisation tool: 
tilt, azimuth of the antenna and the power level 
of the common pilot channel. Two neurons per 
concept are defined, one per direction change. 

One output is equal to 1 provided an absolute 
certainty of the decision whereas the output de-
creases with lower confidence levels. An output 
value of 0 represents that this changes is abso-
lutely not recommended. Note that this design 
allows the expert system to manage uncertainty 
in a simple way. All details of the conceptual 
meaning of the inputs and outputs of the expert 
system are summarised in Table I

Concerning back-propagation, the proposed ex-
pert system uses Levenberg-Marquardt method, 
since there are not out-of-memory problems. 
According to this method the layers are fully 
connected, i.e. every neuron is connected to 
every other neuron in the next layer. Besides, the 
learning process has two phases. In the former, 
any training input is introduced in the network 
input layer. Then, the neural network propagates 
these inputs from layer to layer until the output 
is generated. In the second phase, the obtained 
output is compared with the human expert de-
cision and is propagated backwards from the 
output layer to the input modifying the neuron 
weights. After processing an adequate number 
of training inputs-outputs the neural network 
will be automatically interconnected with the 
appropriate weights. The only open question is 
to determine the network topology, that is, the 
number of hidden layers and number of neu-
rons per layer. The proper network architecture 
is usually chosen using heuristics or past ex-
periences. As for the number of hidden layers, 
they are responsible for detecting the problem 
features. Any continuous function can be repre-
sented with one hidden layer, whereas discon-
tinuous functions require at least two hidden 
layers. Therefore, a neural network has typically 
from three to five layers, account one for inputs 
and one for outputs. Concerning the number of 
neurons per layer, input layer equals the number 

The aim 
of expert 
systems is to 
capture the 
knowledge 
provided 
by a human 
expert

Neuron Input Neuron Output
1 CUS common power 1 ↑ CUS common power
2 CUS tilt 2 ↓ CUS common power
3 CUS mean coverage 3 ↑ CUS tilt
4 CUS 95th coverage 4 ↓ CUS tilt
5 I1 distance 5 ↑ CUS azimuth
6 I1 relative azimuth 6 ↓ CUS azimuth
7 I1 common power
8 I1 level of overlap
9 I2 distance

10 I2 relative azimuth
11 I2 common power
12 I2 level of overlap

...
37 I9 distance
38 I9 relative azimuth
39 I9 common power
40 I9 level of overlap
40 I9 level of overlap Uncertain terms [8]
41 UTRAN CBR (%) 1 Definitely not 0
42 Reported cells 2 Almost certainly not 0.1
43 Cells to add 3 Probably not 0.2
44 Polluted MRs (%) 4 Maybe not 0.3
45 Polluting MRs (%) 5 Unknown 0.4-0.6
46 Avg EcN0 RACH 6 Maybe 0.7
47 Avg Prop. Delay (m) 7 Probably 0.8
48 Perc95 Prop. D elay (m) 8 Almost certainly 0.9
49 Perc98 Prop. Delay (m) 9 Definitely 1

  Table 1. List of neurons in the input and output layer.

feasible to evaluate all possible combinations of 
all parameters. The algorithm goes through the 
search space looking for the best solution. Each 
iteration comprises the evaluation of the cho-
sen objective cost function in order to see if the 
current solution is a good one. In this work, the 
objective cost function aims at maximising the 
covered area while minimising the transmission 
power over the CPICH. Propagation loss maps are 
needed by the simulation block in the objective 
cost function evaluation in order to check where 
the Ec/N0 requirements are met. Traffic density 
map allows giving higher priority to heavy load-
ed areas. The two search algorithms considered 
in this work are described in the following.

Simulated Annealing
Simulated Annealing (SA) algorithm is an en-
hancement of the classical local search algo-
rithms that allows movements towards states 
representing worse solutions, avoiding the pos-
sibility that the algorithm gets trapped in a local 
minimum too early. The name and inspiration 
come from the annealing process used in met-
allurgy. Its simplicity and good performance in 
a number of optimisation problems have made 
it become a very popular tool, with hundreds of 
applications in a wide variety of fields.

Classical local search algorithms start from an ini-
tial solution that is gradually adapted introducing 
small changes (for example, by change the value 
of only one variable) leading to different energy 
states. If the energy difference between two 
states, ΔE, is negative, the solution that the new 
state represents is supposed to be better than the 
previous solution. Therefore, this solution is sub-
stituted by the new one, continuing the process 
until reaching a stable state in which local search 
is unable to find a better solution. This means that 
the search process ends in a local minimum that 
may or may not be the global minimum.

In order to tackle this problem, movements to-
wards states representing a worse solution than 
the current one are also allowed. However, these 
escape movements must be controlled in a cer-
tain manner in such a way that the search is lead 
towards the global minimum. In the SA case, this 

On the other hand, to calculate propagation 
losses, for each grid position all available meas-
urements are averaged whereas empty positions 
are filled using a propagation model calibrated 
with the available data. In order to be able to 
calculate the propagation losses from the RSCP 
values contained in the different measurement 
reports it is necessary to know the current CPICH 
transmission power of each cell, the radiation 
diagrams, the gain of the antennas and their ac-
tual values of tilt and azimuth.

After obtaining these maps – only once per de-
ployed scenario – the simulation block evaluates 
the objective cost function, or energy, provided 
any modification in the radio parameters of any 
cell of the network. The evaluation of this cost 
function requires the calculation of the Ec/N0 
experienced by the CPICH channel of every cell 
in the whole scenario considering the transmit-
ted power, the propagation loss matrix and all 
the power received from interferers. Assuming 
all these characteristics, it is possible to become 
aware of the magnitude of the computational 
cost required in the process. This is why opti-
mum search algorithms are required.

3.3 Optimisation subsystem
The optimisation subsystem is the element re-
sponsible for searching the best configuration 
of the target parameters when trying to obtain 
the best performance for a given objective cost 
function. The aim of the process is to minimise 
or maximise a function – which depends on the 
target parameters – that is evaluated by the sim-
ulation block.

The inputs of the optimisation subsystem are: (1) 
the topology of the network, i.e. the position of 
the target cells and current values of the target 
parameters, (2) the set of possible values and 
restrictions of the target parameters and (3) the 
information needed for the simulation block, i.e. 
the traffic density map of the area under study 
and the propagation loss map of each cell.

In order to try to find the best values of the target 
parameters, the optimisation subsystem uses a 
local search algorithm, due to the fact that is not 

  Figure 3. Example of the localisation algorithm output
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The final cost function is:

		  [6]
where α  weighs the importance of both terms. 
In this paper α  is equal to 0.1.

Figure 5 represents, on the area under study, 
the areas that suffer a reduced coverage level – 
in this paper (Ec/N0 < -12dB) – given the set of 
optimum radio parameters obtained. Colours 
represent the level of traffic of the non-covered 
point. On the left hand, it is depicted the initial 
configuration of the system with the real radio 
parameters. On the right hand, it is represented 
the improvement achieved with the simulated 
annealing solution. It can be seen the outstand-
ing improvement of the carried traffic with good 
coverage. The non-carried traffic becomes more 
than 68 times lower as compared with the origi-
nal configuration of the network.

Finally, Table II compares the performance of 
both studied algorithms in terms of computa-
tional burden, improvement of the final solution 
and power consumption. In terms of computa-
tional burden, SA is clearly better than the other 
algorithm. The reason for this is that the SA im-
plemented in this work provides several mecha-
nisms to allow saving execution time. In terms of 
the cost functions, although PSO requires more 
power consumption than SA and the initial con-
figuration to get its best solution, it is not able to 
reach the performance of the SA.

5.2 Expert system
In this section, some results of the evaluation of 
the expert system executed for a specific target 
parameter and direction are given, specifically 
those obtained by the neural network (NN) re-
sponsible of deciding on a potential tilt increase 
in the CUS. Using Levenberg-Marquardt back-
propagation algorithm, the NN has been trained 
employing 203 cases of cells optimised by an ex-
pert engineer, reserving 15% of the samples for 
validation and a 15% for testing. The best per-

formance has been achieved with three hidden 
layers of 40, 20 and 10 neurons respectively.

Applying the trained NN to the same cells used 
by the auto-optimisation tool, both outputs are 
aligned in 77% of the cases, using 0.6 as the un-
certainty threshold. That is, the decisions taken 
by both tools, in terms of increasing or not the 
tilt, match in 77% of the cells analysed. The com-
parison of the results of both tools is possible 
after converting the auto-optimisation output 
using the transfer function shown in Figure 6.

6. Conclusions

The proposed CAO tool automatically provides 
an optimum configuration of the radio access 
parameters of an operating UMTS network. The 
analysis block is essential for this success, since 
localisation information is the basis for the rest 
of steps. Comparing the search algorithms, the 
mechanism based on SA allows, by means of 

  Figure 5  . Points satisfying Ec/N0 criterion (dark blue) and traffic of non-covered points.
Before optimisation (a) and after SA optimisation (b).

  Figure 6. Transfer function used to convert optimisation output in uncer-
tainty terms.

  Table 2. Comparison of the different optimisation algorithms.

SA PSO
Normalised execution time 1 2.17
Reduction of non-carried traffic (%) 98.53 92.54
Reduction of power use (%) 17.6 -7.16

positioned in real locations of a mobile operator 
and other radio configuration parameters, such 
as antenna heights, azimuth and CPICH power, 
obtained from the real deployment. Figure 4 also 
depicts the traffic density map where the red 
coloured areas represent high traffic density ar-
eas. As can be seen by visual inspection with the 
background city map, the localisation algorithm 
errors are cancelled when multiple inputs are 
averaged and the traffic map fits perfectly the 
areas without evident human activity. The large 
number of inputs allows eliminating the random 
errors produced by the localisation algorithm.

Next section analyses the functioning of the op-
timisation subsystem whereas results from the 
expert system are presented in section 5.2.

5.1 Optimisation subsystem
Two different optimisation techniques were 
tested, simulated annealing and particle swarm. 
They all use the same cost function which allows 
maximising the coverage area, Acov, in a total 
area, taking into account the Ec/N0 criterion. This 
criterion has been weighted by the actual traffic 
density map in the scenario under study,  A0(x,y) 
shown in Figure 4, in order to give higher priority 
to those areas with higher density of users. The 
following objective function meets all the previ-
ous requirements:

		  [2]

where the coverage area is calculated as the sum 
of all the elements of the following function:

covtraffic (x, y) = cov(x, y)·A0 (x, y),

		  [3]

		  [4]

and Acov, initial
  is obtained evaluating (3) for the ini-

tial configuration of the system.

However, this is not the only objective of the 
optimisation problem, since CPICH transmit-
ted power must be also minimised. This second 
function is formulated as:

		  [5]

being N  the number of cells in the system, Pc,i 
the CPICH power of the i-th cell and Pc,min and 

 Pc,max the minimum and maximum value for this 
power, respectively.

of inputs and the same happen with the output 
layer. Hidden layers comprise usually from 10 to 
1000 neurons [8].

In order to design the Expert System, this paper 
proposes to check sequentially the optimum 
number of layers from three to five. For each case, a 
second step is to determine the optimum number 
of neurons per layer. With this aim, an optimum 
search algorithm based on simulated annealing 
is used. The input value is a vector with one, two 
or three element, each ranging from 10 to 1000 
with steps of 1. The cost function to be minimized 
must estimate the performance of a given topol-
ogy. The set of training examples is introduced in 
the network and then the sum of squared errors is 
calculated. The smaller the sum is the better the 
topology. The final architecture will be the opti-
mum configuration of layers and neurons.

4.1 The artificial intelligence decision block
This is the last block of the CAO process. The 
objective of the AI decision block is to merge 
the optimisation tool and the expert system 
outputs. The optimisation tool generates a spe-
cific configuration of the system that, compared 
with the original one, implies a set of decisions 
of either increasing or decreasing azimuth, tilt 
and transmitted power. The expert system just 
supplies this decision, of course with certain 
reliability, but without indicating the concrete 
modification of each parameter. The AI decision 
block processes all this information in a simple 
way: if both sources coincide with the decision, 
the system indicates the action and the specific 
proposal of change. If they disagree, the system 
trusts the expert system more than the simula-
tion tool, and derives the confidence level of all 
actions, i.e. passes all the outputs of the artificial 
neural network.

5. Results

The scenario under study, shown in Figure 4, cov-
ers the city centre of a European city, with sites 

  Figure 4. Optimised scenario and traffic distribution.
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