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Abstract

A framework based on non-linear mixture pro-
cessing (NLMP) proposed by the Signal Pro-
cessing Group of the Institute of Telecommu-
nications and Multimedia Applications of the 
Polytechnic University of Valencia is presented. 
This approach can be applied to complex pro-
blems involving multivariate densities for de-
tection, classification, filtering and prediction. 
An implementation of the NLMP structure for 
classification based on mixtures of independent 
component analyzers is included. The versatili-
ty of this implementation to solve problems in 
diverse real applications is demonstrated with 
the following applications: Quality control using 
impact-echo testing; Diagnosis of the conso-
lidation status in historic building restoration; 
Archaeological ceramic classification; Segmen-
tation and object similarity in image processing; 
and Detection of learning styles in learning web 
activities.

Keywords: non-linear mixture processing, ICA 
mixtures, ICA, material quality classification, non-
destructive testing.

1. Introduction

Classical statistical signal processing relies on 
exploiting second-order information. Spectral 
analysis and linear adaptive filtering are proba-
bly the most representative examples. From the 
perspective of optimality (optimum detection 
and estimation), second-order statistics are suffi-
cient statistics when Gaussianity holds, but lead 
to suboptimum solutions when dealing with ge-
neral probability density models. A natural evolu-
tion of statistical signal processing, in connection 
with the progressive increasing in computational 
power, was exploiting higher-order information. 
Then, high-order spectral analysis and nonlinear 
adaptive filtering received the attention of many 
researchers in this field.

Clearly inside this framework of evolution from se-
cond to higher-order information is the transition 
from principal component analysis (PCA) to inde-
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pendent component analysis (ICA) [1]-[3]. Briefly, 
PCA is a technique for linearly transforming a vec-
tor of correlated components in a vector of varian-
ce-ordered uncorrelated components; meanwhile 
ICA linearly transforms a vector of statistically 
dependent components in unordered indepen-
dent components. ICA, can also be considered a 
natural evolution of prewhitening linear transfor-
mation (like PCA but no variance ordering is be-
ing produced). When Gaussianity holds both ICA 
and prewhitening get equivalent transformations, 
and infinite solutions may exist, as any rotation of 
the prewhitened vector keeps the uncorrelation 
among the vector components. However, when 
non-Gaussianity appears, ICA produces a different 
transformation, that can be unique if appropriate 
constraints are introduced into the design. That is 
the reason why ICA became as popular as a tech-
nique for blind source separation when at maxi-
mum one source is Gaussian.

Most interesting is recognizing that ICA impli-
citly assumes a model for multivariate probability 
density functions (PDF’s). The multivariate PDF of 
the transformed vector will be the product of the 
(one-dimensional) marginal PDF’s of its compo-
nents. Dealing with one-dimensional PDF’s makes 
tractable different complex problems involving 
multivariate PDF’s [4]. This perspective suggests 
that ICA can be an interesting tool to be conside-
red inside areas of intensive data analysis. Actually, 
dealing with estimates of PDF’s, or defining opti-
mality criteria involving PDF’s (like entropy, mutual 
information, Kullback-Liebler distances,...) can be 
considered the last generation in statistical signal 
processing approaches: a natural evolution from 
second and higher-order statistics to data distri-
bution information [5]. Some authors have termed 
these later approaches as non-linear information 
processing [6]. It is relevant recognizing the fact 
that non-linear information processing establishes 
a bridge between statistical signal processing and 
computational and artificial intelligence sciences. 
That is why many people from signal processing 
are increasingly involved in areas like data mining, 
machine learning or clustering, and many resear-
chers from computational sciences are working in 
new data intensive signal and image processing 
applications.
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the independent elements of vectors sk k=1…K. 
Every kind of problem will also have a different 
post-processing of the NLMP outputs.

NLMP may be considered an extension of diffe-
rent structures previously proposed in the statis-
tical signal processing literature. Thus, for exam-
ple, multiple channel structures are very usual in 
signal processing as a way for finding projections 
of a signal into its subspace components.  Filter 
banks structures are the most typical examples 
of this kind. In this sense we can say that NLMP 
makes a “statistical” decomposition of the obser-
vation vector x, i.e., it finds the class-membership 
through p(sk ), or, similarly, it decomposes p(x) 
into its non-Gaussian components.

From a different perspective NLMP may be con-
sidered a multichannel extension of the classical 
nonlinear Wiener filter [10]: a FIR filer followed by 
a zero-memory nonlinear function. A linear-plus-
nonlinear processing scheme is also present in 
every neuron of a neural network [11].

3. Non-linear mixture processor 
design

Before considering NLMP inside the framework 
of every selected application, let us devote a little 
time to the design of the structure. Usually from 
a set of observation vectors are allowed to be 
learned the parameters Ak ,Bk and the PDF’s p(sk ) 
k=1…K.  The Signal Processing Group-UPV [20] 
[12] and other authors [7][8],[13]-[16] have been 
working in some learning algorithms of ICA mix-
tures. Basically, these algorithms try to maximize 
the likelihood of the unknowns given the set of 
observed vectors, assuming some parametric or 
non-parametric models for p(sk ). Semi-supervi-
sion (part of the learning set is unlabelled) and 
hierarchy (grouping or separation of classes to 
establish the appropriate number K) have being 
already considered [17]. However, from the pers-
pective of NLMP, there is a design problem still 
deserving much attention: the adaptive learning 
in nonstationary environments. Nonstationarity 
is present in many applications, so it is a signifi-
cant area of research. We want to face problems 
like how a new element (labelled or unlabelled) 
incoming into the learning set should modify 
the NLMP parameters. In a similar manner we 
will study a dynamic definition of the number of 
channels (classes), by performing adaptive hie-
rarchy analysis, among other complex problems.  
In essence, solving these problems will give a 
more (nonlinear) signal processing perspective 
to the classical machine learning point of view.

4. ICA mixture algorithm for 
signal classification

We developed a NLMP configuration for clas-
sification called Mixca (Mixture of Component 
Analyzers) [18]-[20]. For this case, we are interest 

Recently, the Independent Component Analysis 
Mixture Model (ICAMM) was introduced as an ex-
tension of ICA [7][8]. ICAMM is a kind of nonlinear 
ICA technique that extends the linear ICA method 
by learning multiple ICA models and weighting 
them in a probabilistic manner [7]. Thus, ICAMM 
has emerged as a flexible approach to model arbi-
trary data densities using mixtures of multiple ICA 
models with non-Gaussian distributions for the 
independent components (i.e., relaxing the res-
triction of modelling every component by a multi-
variate Gaussian probability density function).

In the next sections, we present a summary of a 
non-linear mixture processing approach deve-
loped by the Signal Processing Group of the Po-
lytechnic University of Valencia. This approach has 
been applied in solving detection, classification, 
filtering, and prediction problems. In this paper, 
only applications on signal classification and pat-
tern recognition are included [9].

2. From non-Gaussian mixture 
models to the non-linear mixture 

processor structure

A non-Gaussian mixture model assumes that the 
space of observations can be decomposed in 
K classes. Every class is characterized by a non-
Gaussian PDF. More specifically, it is assumed 
that every class satisfies an ICA model: vectors  
xk corresponding to a given class Ck k = 1 …K 
are the result of applying a linear transformation 
Ak  to a (source) vector Sk, whose elements are 
independent random variables, plus a bias or 
centroid vector bk , i.e.  xk = Aksk+bk  k=1…K.

The underlying multivariate PDF will be the mixture

￼			    (1)
where

(2)

We have assumed that all the classes are equally 
probable a priori to ease the equations. Equa-
tions (1) and (2) lead naturally to the proposed 
non-linear mixture processor (NLMP) structure 
showed in Fig. 1. Basically NLMP has K processing 
channels. Every channel is a linear processor im-
plementing the last equation (recovering of the 
source vectors), followed by a non-linear proces-
sor g(sk ). This later will be the same in classifica-
tion, filtering or prediction, but will be different 
in the detection configuration. As we will see, 
estimation of p(sk ) will be required to compute 
g(sk ) in all the cases. This later point illustrates 
the fact that complex multivariate PDF estima-
tion generally required in nonlinear information 
processing is simplified to the estimation of mar-
ginal one-dimensional PDF’s, corresponding to 

Every NLMP 
channel is an 
independent 
component 
analyzer 
followed by 
a non-linear 
processor
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in computing

(3)

thus, we select  and the 
maximum of the outputs corresponding to the 
K channels indicates the selected class.

The Mixca algorithm employs a non-parametric 
estimation of the source PDF’s. This is the most 
general way of approaching this problem since 
no particular parametric models are needed. Im-
posing independence   ,
we have to estimate the marginals 

. This can be done by 
means of

	 (4)

where a is a normalization constant and h is a 
constant that defines the degree of smoothing 
of the estimated PDF [21].

Semi-supervision is included using the known 
 for the k-n pairs where the-

re is prior knowledge. In addition, the method 
allows the incorporation of any ICA algorithm 
into the learning of the ICA mixture model.

The non-linear part of the algorithm is imple-
mented by an estimation of residual dependen-
cies after training for correction of the posterior 
probability of every class to the testing obser-
vation vector. Thus, the estimation of the source 
PDF is improved applying post-convergence co-
rrection using a multidimensional density esti-
mator such as,

		  (5)

where I is the iteration number at the end of the 
parameter learning stage of the classifier.

5. Applications

This section includes the following applications of 
the algorithm of Section 4: Quality control using 
impact-echo testing; Diagnosis of consolidation 
status in historic building restoration; Archaeo-
logical ceramic classification; Segmentation and 
object similarity in image processing; and Detec-
tion of learning styles in learning web activities.

5.1 Quality control using impact-echo testing
This application consists of discriminating pat-
terns for material quality control from homo-
geneous and defective materials inspected by 
impact-echo. The problem is modelled as an in-
dependent component analysis (ICA) mixture, re-
presenting a class of defective or homogeneous 
material by an ICA model whose parameters are 
learned from the impact-echo signal spectrum. 
The material conditions were: homogeneous, 
one-defect (hole or crack), and multiple-defects.
The impact-echo signals can be considered as a 
convolutive mixture of the input signal and the 
defect signals inside the material, as shown in 
Fig. 2. (a material with 11 internal focuses due to 
point flaws that build a crack-shape-like defect 
that is oriented in the plane xy). 

Recently, we proposed an ICA model applied 
to multichannel non-destructive impact-echo 
testing. This model considered the transfer 
functions between the impact location and po-
int defects spread in a material bulk as “sources” 
for blind source separation. It was validated with 
finite element simulations and lab experiments 
finding its suitability for classification and de-
tection of flaws [22]-[28]. In order to extend the 
analysis of defective materials by impact-echo 
to classifications related with the size, orienta-
tion and kind of defects, several levels of classi-
fication with different detail in the knowledge 
of the defects were approached applying diffe-

  Figure 1. Non-linear Mixture Processor structure (NLMP)

Mixca includes
pdf' 
nonparametric 
estimation, 
semisuper-
vision,
dependency
correction



Waves  ·  2009  ·  year 1 / ISSN 1889-8297 71

toration of heritage buildings and materials. 
The signal processing of these techniques are 
based on time-frequency techniques [38][39], 
higher order statistics [37], and ICA [40]. In this 
latter application, we used the Mixca algorithm 
configured to estimate the parameters for only 
one ICA. The application consists of determining 
consolidated and non-consolidated zones in a 
wall of a dome during its process of restoration. 
The material diagnosis was made by ultrasounds 
using pulse-echo technique. The injected ultra-
sonic pulse is recovered, buried in backscattering 
grain noise plus sinusoidal phenomena; this lat-
ter is analyzed by ICA. The mixture matrix is used 
to extract useful information concerning to reso-
nance phenomenon of multiple reflections of the 
ultrasonic pulse at non consolidated zones [40].

The recorded signals are modelled as the super-
position of the backscattered signal plus sinusoi-
dal phenomena. This latter sinusoidal contribu-
tion should be determined to know if it is due 
to useful information on the material structure, 
such as material resonances, or interferences due 
to the instrumentation during measurement. ICA 
statement of the problem is:

￼				     (7)

where L is the number of measurements, xl(t) is 
the received signal from the material at the posi-
tion l of the B-Scan, sl(t)is the backscattering sig-
nal that depends on the material microstructure, 
and αile j ωit+θil) i=1…N - 1,l=1…L (are the sinusoi-
dal sources to be analyzed.

B-Scans diagrams were used to visualize conso-
lidated and non consolidated material zones to 
check the quality of restoration in the wall. 

B-Scan is a 2D representation of a signal set. The 
evolution in time windows of a parameter such 

rent classifiers, such as LDA (Linear Discriminant 
Analysis), kNN (k-Nearest Neighbors), and MLP 
(Multi-Layer Perceptron) [29]-[33].

In [34][35], we formulated a mixture ICA model 
taking into account the resonance phenomenon 
involved in the impact-echo method. This model 
extended to defects with different shapes, such 
as cracks or holes, and formulated the quality 
condition determination of homogeneous and 
defective materials as an ICA mixture problem. 
The following was demonstrated,

R(k)=H(k) ·s(k) +b(k) k=1…K

￼	  (6)

where
R(k): compressed spectra of the multichannel im-
pact-echo setup for the defective material class k

H(k): mixture matrix for the defective material class

s(k): compressed spectra from the focuses fj , 
j=0…F,  for the defective material class k, being 
f0 the impact excitation

Fig. 3 shows the estimated mixing matrixes (re-
presented in grey scale) and sources with their 
corresponding kurtosis values for four classes of 
materials corresponding to real experiments on 
specimens of aluminium alloy series 2000. The 
quality of the materials were: homogeneous, 
one defect –hole, one-defect –crack, and mul-
tiple defects. The differences in the estimated 
mixing matrixes among the classes clearly show 
the suitability of the ICAMM model for classi-
fying different kinds of defective materials ins-
pected by impact-echo. The estimated sources 
represent linear combinations of the spectrum 
elements produced by the defects that activate 
different resonant modes of the material. In this 
level of classification, the pattern of the defects 
was detected independently of their orientation 
and dimension. These patterns are related to the 
number of point flaws that build the defects and 
the spatial relationship between the flaws. In de-
fective materials, the propagated waves have to 
surround the defects and their energy decreases, 
and multiple reflections and diffraction with the 
defect borders are produced. The patterns of the 
displacement waveforms are affected by the sha-
pe of the defects [36] building a kind of signatu-
re of the defect. This signature is distinguishable 
in the parameters estimated by Mixca since the 
mixing matrix is different for every class and the-
re are particular densities of the sources that are 
recovered only for a specific class. Classification 
results obtained by Mixca using non-parametric 
source density estimation overcome the results 
obtained by LDA, kNN, and MLP.

5.2 Diagnosis of the consolidation status in 
historic building restoration
We have researched in techniques based on 
ultrasonic testing for the conservation and res-

  Figure 2. Wave propagation scheme proposed for an inspection by impact-
echo using 4 sensors. The path between the point flaws and the sensors is depic-
ted only for a few focuses.
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as power or spectrum was calculated for each 
one of the signals. Then all of the calculated 
information was put together in a representa-
tion of the measurement point versus the sig-
nal parameter evolution. Fig. 4 shows different 
points of a B-Scan measured by ultrasound at 
the dome.

Fig. 5 shows the recorded signals and the reco-
vered sources by ICA; the processed number of 
samples was from 600 to 6000.

Fig. 6a and Fig. 6b show two power’s  
B-Scans obtained from the mixture matrix co- 
rresponding to    

  Figure 3. Mixing matrixes and sources estimated for four different kinds of defective materials tested in impact-
echo experiments. The kurtosis values are displayed for the source densities

  Figure 4. Ultrasound inspection at the cupola
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by ultrasonic testing in through transmission 
mode (using two transducers: one emitter and 
one receiver) [45]. From the recorded signals the 
following features were extracted: total signal 
attenuation, propagation velocity, principal fre-
quency, principal frequency amplitude, principal 
frequency attenuation, signal power, attenua-
tion curve initial value, centroid frequency, time-
reversibility, third order autocovariance, and ins-
tantaneous centroid frequency.

The signal features were preprocessed with PCA. 
An iterative process of classifying with a varia-
ble number of components was applied, using 
LDA and kNN as classifiers to determine the best 
number of PCA components [9]. The selected 
components were used as input for the Mixca 
procedure using: non-parametric ICA, JADE, TD-
SEP, and fastICA [18],[46]-[48] to compute the 
increments of the model parameters and several 
semi-supervision ratios were tested [17] (semi-
supervision ratio is the proportion between 
labelled and unlabelled data in training stage). 
Results up to 100 Montecarlo trials of the classifi-
cations were obtained.

The averaged classification accuracy of the ICA 

and   respectively. 

The first B-Scan represents the sinusoidal phe-
nomenon depicting the non consolidated zone. 
Thus this phenomenon can be associated with 
the shape of the material non consolidated zone. 
The second B-Scan is the complementary infor-
mation concerning to the consolidated zone. 
The diagrams obtained from ICA information 
depict more precisely the two different zones 
of the material than the one obtained by non-
stationary analysis. Thus, the use of ICA as pre-
processor allows the power signal B-Scans of the 
wall to be enhanced; and thus, a better insight 
into the underlying physical phenomena was 
obtained.

5.3 Archaeological ceramic classification
This application introduces the ICA mixture mo-
dels in ultrasonic non-destructive testing of ma-
terials, particularly in classifying archaeological 
pottery sherds from different ages [41]-[44]. The 
analyzed archaeological pottery pieces come 
from three deposits at the East Spain: Requena, 
Lliria, and Enguera. A total of 480 pieces were 
available from the Bronze Age, Iberian, Roman, 
and Middle Age periods that were measured 

  Figure 5. Recorded signals and recovered sources (the sinusoidal “interference” is highlighted)

  Figure 6. Power B-Scan after ICA preprocessing
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mixture classifications using different ICA al-
gorithms for estimating the increments of the 
model parameters and two different supervision 
ratios are shown in Fig. 7 and Fig. 8. We had a total 
of 480*0.75=360 original samples for training. 3 
replicates adding spherical Gaussian noise to the 
original samples were estimated to obtain a total 
of 1440 samples for training. Then for a supervi-
sion ratio of 0.7, we had 1008 labelled and 430 
unlabelled samples for training stage. The best 
performance in classification for the ICA mixture 
algorithm was obtained using the non-paramet-
ric Mixca. For 0.5-supervision ratio average re-
sults of percentage of success were: Mixca=71%, 
JADE=65%, TDSEP=65.5%, and fastICA=60.4%. 
Mixca results with this little supervision in training 
are comparable with the best results of LDA with 
quadratic distance (72.7%). For a supervision ratio 
of 0.7 the results are much better for Mixca(80.42%) 
and for JADE(72.3%) are comparables with LDA-
quadratic distance; results for TDSEP(67.8%) and 
fastICA(66.7%) become better than LDA- linear 
and Mahalanobis distances and kNN.

Table 1 contains the confusion matrix obtained 
by Mixca with 0.7 supervision ratio. The category 
Roman is not very difficult to classify but it is 
often assigned to pieces of Bronze and Iberian 
ages. Middle age pieces are 11% confused with 
Iberian pieces. Thus Roman and Middle age pie-
ces cause misclassification of Bronze and Iberian 
pieces. The good average percentage of success 
obtained (80.42%) indicates good matching of 
the 6D component space projected from the cal-
culated features to an ICA mixture model. Some 
of the pieces were treated by consolidation pro-
ducts for conservation, but it did not seem to 

affect their classification on archaeological age. 
In addition, there was knowledge about corre-
lation of the ceramic age with material porosity: 
Bronze and Iberian (high porosity), Middle age 
(medium porosity), and Roman (low porosity). 
Thus the correct classification of the sherds indi-
cates that ultrasonic signal features could mea-
sure changes in physical properties, as porosity, 
of the archaeological ceramics. Complementing 
the measures with ultrasounds, have been ca-
rried out a diversity of morphological and phy-
siochemical characterization by means of con-
ventional instrumental techniques in order to be 
contrasted with the above mentioned. 25 repre-
sentative pieces were selected for chemical and 
physical analyses. 

Those pieces were observed, photographed 
and analyzed by means of optical microscope, 
scanning electron microscope (SEM) and X-ray 
diffraction techniques. As well physical analysis 
for the evaluation of density and open porosity 
parameters were applied on the selected pieces. 
Some of the test tubes prepared for SEM are 
shown in Fig. 9.

Data provided by these analytical studies show 
that there are clear differences at a morphologi-
cal level between the different groups of proces-
sed fragments. So, ceramic corresponding to the 
Bronze age exhibits a dark brown tone with quite 
a lot of porosity and the presence of a lot of dark 
tone ferrous-composition spots associated with 
magnetite as well as reddish ferrous iron oxide 
nucleus. 

The Iberian ceramic coming from Enguera has 
a variable tonality, between orange and black. It 
can be found abundant ferrous iron oxide nucleus 
(III) as well as more isolated dark magnetite spots. 
It is an iron-rich ceramic (up to 7.45% of Fe2O3), 
with a noticeable content in calcium (up to 6.30% 
of CaO). In relation with the physical properties 
we can said that the real densities were around 
2.4 g/cm3 and the bulk density and the porosity 
were around 1.8 g/ cm3 and 22%, respectively.

  Figure 7. Results for 0.5 supervision ratio   Figure 8. Results for 0.7 supervision ratio

  Table 1. Confusion matrix by Mixca with 0.7 super-
vision ratio. Values are in percentages
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5.4 Segmentation and object similarity in 
image processing
In this application, we provided a new algorithm 
to process the parameters of ICA mixtures in 
order to obtain hierarchical structures from the 
basis function level to higher levels of clustering 
[12][49]. Particularly the algorithm was applied 
to image analysis obtaining promising results 
in discerning object similarity and suitable le-
vels of hierarchies by processing image patches. 
This kind of feedforward process would suggest 
some relation with abstraction. The algorithm is 
agglomerative and uses the symmetric Kullback-
Leibler distance [5] to select the grouping of the 
clusters at each level.

5.4.1 Object similarity
For the hierarchical classification of object ima-
ges, the COIL-100 database was used [50]. This 
database consists of different views of objects 
over a dark background. The method applied 
to preprocess the images was the following 
[1]: the images were converted to greyscale, 
and grouped in different views in order to ob-
tain several images to train up to three classes 
per object; from each image, patches of 8 by 8 
pixels were randomly taken to estimate the ba-
sis function previous a whitening process, with a 
reduction to 40 components. A total of 1000 pat-
ches for object were extracted. It is well known 
that local edge detectors can be extracted from 
natural scenes by ICA algorithms [51].

The basis functions of each class were then cal-
culated with the ICA mixtures algorithm, con-
sidering supervision, and using the Laplacian 
prior to estimate the source PDF’s. Fig. 10 shows 
the 40 basis functions of six classes correspon-
ding to different views of two objects. The basis 
functions of Fig. 10a correspond to a box with a 
label inscribed whereas Fig. 10b corresponds to 
an apple. We can observe the similarity between 
the functions of each object and differences, 
for instance, the lower frequency in the pattern 
corresponding to a natural object versus the fre-
quency in the pattern of a more artificial object.

The fragments of Roman ceramic coming from 
Lliria have variable characteristics depending on 
the typology (sigillata, common or amphora). In 
all cases, they are orange tone mush, small size 
porosity as well as low level of degreaser, rising 
in quantity from the sigillata typology to the am-
phora, with content in Fe2O3 of 5.71, 6.36 and 
9.24% respectively, and content in CaO of 0.67, 
2.92 and 1.29% respectively. The real densities are 
very similar, between 2.4 and 2.7 g/cm3, and the 
bulk densities and porosity are around 2.1, 1.75 
and 1.8 g/ cm3, and 42, 28 and 31% respectively. It 
is worth noting the high value of porosity showed 
by the fragments of sigillata, which is associated 
with pores of small to very small size and very con-
nected, which allows big water absorption once 
the varnish layer is removed. Finally, the Middle 
age ceramic shows a bright orange to brown co-
lour that remarks that are ferrous mush. It can be 
seen quite red ferrous iron oxide nucleus of small 
to very small size as well as dark tone magnetite 
spots. Also it can be seen white tone limy masses, 
associated to a high content in CaO (around 8%). 
In relation with the physical properties of density 
and porosity, it is worth mentioning real density 
values ranging in 2.0-2.38 g/ cm3, bulk density of 
1.68-1.88 g/ cm3 and porosity of 10.0-25.7%.

Results from chemical and physical analyses 
from a sample of the pieces showed differences 
among porosities and properties of pieces from 
different ages. Those results seem to be correla-
ted with the extracted ultrasound parameters.

  Figure 9. Results for 0.7 supervision ratio

  Figure 10. Two groups of basis functions corresponding to two different objects. Basis functions at top are from a little box and basis functions 
at bottom are from an apple

A better 
insight into 
the underlying 
physical 
phenomena 
was obtained.
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The same data were used to measure the dis-
tance between classes estimating the symmet-
ric Kullback-Leibler distance from the mixture 
matrices calculated previously. Distances reveal 
that basis functions allow the similarity (short 
distances) between classes corresponding to the 
same object (intra-object) to be found, whereas 
distances are much longer between classes of 
different objects (inter-object), see Table 2.

Additionally, various experiments in order to 
create a hierarchical classification of objects 
were performed. Thus, patches were sampled 
from a large number of objects, some of them 
very similar among themselves. A hierarchical 
representation was then created applying the 
agglomerative clustering algorithm. 

Fig. 11 shows an example of classification of 
eight objects, with three main kinds of objects. 
The tree outlined by the dendrogram positively 
shows grouping of objects based on similarity 
content, and suitable similarities between ‘fa-
milies’ of objects, e.g., cars were more alike with 
cans than with apples.

5.4.2 Natural images
The hierarchical algorithm was applied to natural 
images in order to obtain a bottom-up structure 
merging several zones of an image. Fig. 12 shows 
an image with 9 zones, some of them clearly 
different and others more or less similar each 
other. Dendrogram of Fig. 12 shows how the zo-
nes are merged from the patches. It shows two 
broad kinds of basis functions that correspond 
to the part of the image that mainly contains 
portions of sky, and those zones that correspond 
to patches where there is a predominant portion 
of stairs (high frequency). The dendrogram also 
shows the distances at which the clusters are 
merged; it can be used as a similarity measure of 

the zones of the image. The zones in the bottom 
part of the image are merged at low distances 
due to the high similarity in borders.

5.5 Detection of learning styles in learning 
web activities
This application consists of the detection of 
student learning styles in e-learning [52]-[54]. 
We used the Mixca algorithm configured to es-
timate one ICA. The application was carried out 
on data of graduate and undergraduate courses 
at the Universidad Politécnica Abierta (UPA) site. 
The UPA is a virtual campus at Universidad Poli-
técnica de Valencia. The e-learning event activity 
at the campus web was analyzed to recognize 
patterns on learning styles of the students. Data 
from the use of the UPA web facilities included 
the following information about e-learning 
event activities: 1(course access), 2(agenda 
using), 3(news reading), 4(content consulting), 
5(email exchange), 6(chats), 7(workgroup do-
cument), 8(exercise practice), 9(course achie-
vement), and 10(forum participation). Date and 
time for each event also were available. Besides 
of the information on the web activity, the exer-
cises achieved and grades obtained by the UPA’s 
students were available. The data were collected 
from the virtual campus web in the period three 
years, totalizing 2’391,003 records.

A learning-style model classifies students ac-
cording to where they fit in a number of scales 
corresponding to the ways in which they receive 
and process information. One of the most accep-
ted learning style taxonomy for engineering stu-
dents is the Felder’s model [55], see Table 3 (one 
learning style is conformed by the combination 
of one feature in each dimension, for instance, 
intuitive-visual-deductive-active-global).

We applied ICA after reducing the data to 5 com-
ponents by PCA, for grouping the events of the 
web activity in learning dimensions taking into 
account the Felder’s framework [55]. PCA redu-
ced 10 web event activities to 5 components. To 
solve the problem of detecting learning styles in 
e-learning, we assume that the underlying inde-
pendent sources that generate the web log data 
are dimensions of the learning styles of the stu-

  Fig. 11. Hierarchical representation of object agglomerative clustering. Three kinds of object ‘families’ are obtained

  Table 2. Mean distances inter-object and intra-
object of Fig. 10

Hierarchy 
reveals 
meaningful 
bottom-up 
makeups 
merging 
natutal 
image zones.
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ting, and use of agenda. This finding confirms the 
assumption that the more quickly way to change 
the learning style of the student is to change the 
assessment style, i.e., expected evaluation bias 
how the student learns [56].

We made a cluster validation procedure to de-
termine the best quality of cluster configuration 
for data of Fig.13. It consisted of estimating the 
partition and partition entropy coefficients for 
different number of clusters [57]. The optimum 
number of clusters was 4 as shown in Fig. 13.

Results show learning style detection was pos-
sible only for courses with grades. The implicit 
teaching styles of the evaluation methodologies 
encourage specific learning styles of the stu-
dents, i.e., the lack of assessment did not allow to 
detect student learning styles. Mixca using non-

dents, and we observe x  linear combinations of 
those styles through the use of the facilities at 
the virtual campus. 

Then, si ,(i=1,…,5 learning style dimension) corres-
pond to the “perception”, “input”, “organization”, 
“processing”, and “understanding” dimensions 
(see Table 3); and the mixture matrix A provides 
the relation between e-learning style dimensions 
and e-learning event activities, aij ,(i=1,…,5 lear-
ning style dimension), (j=1,…,10 e-learningactivity).

Each source was associated with one learning di-
mension of Table 3, analyzing the weight of the 
web activities and considering the principal eva-
luation methodologies employed by teachers. 
For graduate courses with grades: dimension 1 
was not detected and dimension 5 was detected 
twice. The methodologies assigned grades fo-
cusing on: achievement, individual student par-
ticipation, or group work. The implicit teaching 
styles of the evaluation methodologies encoura-
ge specific learning styles of the students. The 
learning dimension 1 (sensory-intuitive) corres-
ponding to “perception” was not detected in 
the ICA mixing matrix; it could be because the 
emphasis of educational strategies did not fa-
vour to highlight that dimension.

Table 4 shows the association found by ICA be-
tween learning styles and web activities (we 
have added a possible web activity combina-
tion for learning dimension 1). Note that some 
web activities are associated with more than 
one dimension; it has sense because a web ac-
tivity could demand several capabilities of the 
students used in their learning process. Allowing 
that kind of relationship we can obtain more real 
and versatile descriptions of the student learning 
styles, besides of including all the dimensions of 
the learning framework.

Fig. 13 shows the sources 3, 4, and 5 (organization, 
processing, understanding) obtained for the gra-
ded graduate course dataset. Four labelled cha-
racterised zones in the learning style space are 
displayed: 1.) Represents the learning style more 
important in the population. The learning for the 
students in this zone emphasizes global unders-
tanding, active processing, and deductive logic 
(natural human teaching style), and high grades. 
2.) This learning style is focused on inductive lo-
gic (natural human learning style), with sequen-
tial understanding, and relative active processing. 
Students within this style could have natural skills 
for virtual education. 3.) It is characterised by glo-
bal understanding, deductive logic, and reflective 
processing. Students within this style would have 
higher abstraction skills that need of teaching. 4) 
Basically this cluster represents outliers with indi-
vidual learning styles.

We can conclude that the dimension of unders-
tanding enables to project clearly the learning 
styles of the students, and its principal compo-
nents are course achievement, content consul-

  Figure 12. (Left) Image divided in nine zones. (Right) Hierarchical representation 
of the zones of the image based on basis functions similarity. Two broad groups 	

	 of  zones are shown.

  Table 3. Dimensions of learning and teaching styles (Felder’s model)

  Table 4. Association between learning styles and web activities

Preferred Learning Style Corresponding Teaching Style

1
Sensory-
Intuitive

Perception
Concrete-
Abstract

Content

2
Visual-

Auditory
Input

Visual-
Verbal

Presentation

3
Inductive-
Deductive

Organization
Inductive-
Deductive

Organization

4
Active-

Reflective
Processing

Active-
Passive

Student
Participation

5
Sequential-

Global
Understanding

Sequential-
Global

Perspective

Learning Style Web event activity

1
Sensory-

Intuitive
Perception chats, forum participation, course access.

2 Visual-Auditory Input
chats, forum participation, news reading, 

email exchange.

3
Inductive-

Deductive
Organization

workgroup document, news reading, course 

achievement, content consulting .

4
Active-

Reflective
Processing

email exchange, content consulting, 

workgroup document, exercise practice.

5
Sequential-

Global
Understanding

course access, agenda using, content 

consulting, course achievement.
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parametric density estimation allow more suita-
ble learning styles clusters were found than the 
learning styles found by Mixca using standard 
ICA algorithms.

6. Conclusions

The proposed NLMP structure builds a versatile 
and powerful framework that can be employed 
in many real problems involving complex data 
densities. We provided several applications in 
signal classification and pattern recognition pro-
cessing different kinds of data, such as sonic and 
ultrasonic signals; images; and historic web log 
data. Thus, we demonstrated that the degrees of 
freedom afforded by mixtures of ICAs suggest 
that it is a good candidate for a broad range of 
problems.

The modelling of the data as mixtures of inde-
pendent component analyzers contributes to 
obtain higher insights into the underlying phy-
sical phenomena of the applications since this 
modelling makes both source extraction and 
signal analysis simultaneously. This enables a 
more detailed explanation of the measured sig-
nals and of their source data generators that are 
behind the observed mixture. In any case, whe-
ther the complexity of the problem constraints 
a physical interpretation, the framework can be 
used as a general data mining technique.
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