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Abstract

In the next years, one of the most significant 
technological developments that will lead to the 
new broadband wireless generation is the com-
munication via Multiple-Input Multiple-Output 
(MIMO) systems. MIMO systems are known to 
provide an increase of the maximum rate, reli-
ability and coverage of current wireless com-
munications, without additional bandwidth or 
transmit power. For these reasons, one of the 
research lines at the iTEAM research Institute 
is focused on this kind of wireless systems. This 
paper presents an overview of MIMO wireless 
techniques, highlighting the aspects of them 
where our research is mainly concentrated. Es-
pecially, the problems of efficient detection in 
point to point MIMO systems and beamforming 
in coordinated MU-MIMO systems are discussed. 
Finally, some of the solutions to these problems 
that have been carried out at the iTEAM are ad-
dressed.

Keywords: MIMO systems, MIMO detection, co-
ordinated MU-MIMO 

Recent advances in MIMO wireless systems 

1. Introduction

In the next years, one of the most significant tech-
nological developments that will lead to the new 
broadband wireless generation is the communi-
cation via Multiple-Input Multiple-Output (MIMO) 
systems [1]. MIMO systems are known to provide 
an increase of the maximum rate, reliability and 
coverage of current wireless communications, 
without additional bandwidth or transmit power. 
MIMO systems have already been employed in the 
existing 802.11n and 802.16e standards resulting 
in a huge leap in achievable rates. 

The evolution of MIMO wireless communication, 
from Single Input Single Output (SISO) systems 
to multi-cell coordinated multi-user MIMO (MU-
MIMO) systems is shown in Fig. 1. The first system 
(Fig. 1(a)) depicts the classical and easiest way of 
communication, using one transmitting and one 
receiving antenna. Its capacity is only limited by 
the signal-to-noise ratio (SNR). Fig. 1(b) shows a 
system where either transmitter or receiver has 
several antennas. Smart antennas, which use 
arrays of antennas, are examples of these sys-
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 Figure 1. MIMO systems evolution
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transmit antennas using certain principles 
of full or near orthogonal coding. Diversity 
exploits the independent fading in the mul-
tiple antenna links to enhance signal diversi-
ty. Because there is no channel knowledge, 
there is no beamforming or array gain from 
diversity coding. 

Spatial multiplexing can also be combined with 
precoding when the channel is known at the 
transmitter or combined with diversity coding 
when decoding reliability is in trade-off. Foschini 
[2] and Telatar [3] have shown that the channel 
capacity for a MIMO system can be increased 
as the number of antennas is increased under 
some conditions, proportional to the minimum 
number of transmit and receive antennas. Spa-
tial multiplexing techniques make the receivers 
very complex, and therefore it is typically com-
bined with Orthogonal frequency-division mul-
tiplexing (OFDM) or with Orthogonal Frequency 
Division Multiple Access (OFDMA) modulation, 
where the problems created by multi-path chan-
nel are handled efficiently. 

The use of MIMO systems was traditionally in-
tended for point to point communication. The 
natural extension of this original system would 
be to consider MIMO in multi user scenario. The 
vision for next generation cellular networks in-
cludes data rates approaching 100Mbps for 
highly mobile users and up to 1Gbps for low 
mobile or stationary users, which requires effi-
cient use of the available spectrum.  Multi user 
MIMO (MU-MIMO) technology is expected to 
play a key role in this context. There are two chal-
lenges in MU-MIMO scenario (Fig. 1(d)): uplink 
(where multiple users transmit simultaneously 
to single base station (BS)) and downlink (where 
the BS transmits to multiple independent us-
ers). The uplink challenge is addressed using 
array processing and multi user detection tech-
niques by the base station in order to separate 
the signals transmitted by the users. The down-
link challenge is somewhat different. MU-MIMO 
downlink channel is similar to that of SU-MIMO 
except for the fact that the receiver antennas are 
distributed among different independent users 
as shown in Fig. 1(d).  This creates a challenge in 
decoding the received symbols since joint de-
coding requires each user to have the symbol 
received from all the receiver antennas of all 
the users. It is practically impossible to achieve 
this level of coordination between all the users. 
Almost all the proposed techniques ideated for 
addressing the MU-MIMO downlink challenge 
employ processing of data symbols at the trans-
mitter itself, that is, precoding. 

Although precoding is not a new concept and 
has been used in SU-MIMO systems as well, it was 
optional and used only to improve SNR at the re-
ceiver. However in MU-MIMO systems precoding 
is essential to eliminate or minimize multi-user 
interference. Precoding is performed with the 
help of downlink channel state information (CSI), 

tems and improve performance regarding co-
verage, capacity or quality of the radio link. The 
main techniques used by these systems are bea-
mforming and spatial diversity, which can achie-
ve a logarithmic increase in spectral efficiency.

A point-to-point or single-user MIMO (SU-MIMO) 
is shown in Fig. 1(c). In this system, both transmit-
ter and receiver have several antennas, Nt  and  Nr , 
respectively. The basic aim of MIMO systems is 
to exploit the spatial dimension, due to multi-
ple antennas in transmitter and receiver side, as 
well as temporal dimension. MIMO can be sub-
divided into three main categories: precoding, 
spatial multiplexing, and diversity coding. 

• Precoding is multi-layer beamforming in a 
narrow sense or all spatial processing at the 
transmitter in a wide-sense. In (single-layer) 
beamforming, the same signal is emitted 
from each of the transmit antennas with 
appropriate phase (and sometimes gain) 
weighting such that the signal power is 
maximized at the receiver input. The bene-
fits of beamforming are to increase the sig-
nal gain from constructive combining and 
to reduce the multipath fading effect. In the 
absence of scattering, beamforming results 
in a well defined directional pattern, but in 
typical cellular conventional beams are not 
a good analogy. When the receiver has mul-
tiple antennas, the transmit beamforming 
cannot simultaneously maximize the signal 
level at all of the receive antenna and preco-
ding is used. 

• Spatial multiplexing requires MIMO an-
tenna configuration. In spatial multiplexing, 
a high rate signal is split into multiple lower 
rate streams and each stream is transmitted 
from different transmit antennas in the same 
frequency channel. If these signals arrive at 
the receiver antenna array with sufficiently 
different spatial signatures, the receiver 
can separate these streams, creating paral-
lel channels for free. Spatial multiplexing is 
a very powerful technique for increasing 
channel capacity at higher Signal to Noise 
Ratio (SNR). The maximum number of spa-
tial streams is limited by the lesser in the 
number of antennas at the transmitter or re-
ceiver. Spatial multiplexing can be used with 
or without transmit channel knowledge. 
In our research group, we are dealing with 
the problem of finding efficient detection 
schemes for spatial multiplexing SU-MIMO 
systems (see Fig. 1(c)), under the assumption 
of perfect channel knowledge. 

• Diversity coding techniques are used when 
there is no channel knowledge at the trans-
mitter. In diversity methods a single stream 
(unlike multiple streams in spatial multi-
plexing) is transmitted, but the signal is co-
ded using techniques called space-time co-
ding. The signal is emitted from each of the 
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it requires the transmitter to know the downlink 
CSI of each user. 

Cooperative schemes have been recently pro-
posed as an effective solution to deal with the 
effects of fading channels and to improve the 
performance of interference-limited wireless 
systems  [4,5] (Fig. 1(e)). Such cooperative sche-
mes typically include the conventional relaying 
between user terminals, but may be extended 
to cooperation between base stations. This last 
form of cooperation may find one of its main 
applications in the downlink of multi-cell wire-
less networks. In this case, the BS transmit the 
signals to the users within their cell but they can 
also cooperate in order to implement a joint re-
source allocation scheme across the cells. 
￼ 

Assuming that the BS are connected via a high-
speed backbone (Fig. 1(f )), a more advanced 
form of cooperation based on signal processing 
techniques is possible. Generally speaking, the 
antennas from different BS can transmit coordi-
nately and each user can receive useful signals 
from several BS (Fig. 2). This form of multi-cell 
processing has been reported in the existing 
literature as network coordination  [6] and can 
be formulated as a spatially distributed MIMO 
downlink problem. Several challenges existing 
in cooperative systems are currently tackled at 
the iTEAM research Institute. For instance, seve-
ral sub-optimal algorithms for designing multi-
base beamformers with per-base station power 
constraints were presented in [7]. Moreover, 
other advantages of the coordinated transmis-
sion, including power gain, channel rank impro-
vement and macrodiversity protection were also 
addressed. 

The paper is structured as follows. Section II is fo-
cused on spatial multiplexing MIMO systems and 
presents an state-of-the-art review of existing 
MIMO detection techniques together with our 
current research on this topic. Section III deals 
with cooperative MU-MIMO systems and descri-
bes an overview of the application of precoding 
techniques to MU-MIMO systems with distribu-
ted network coordination. Several advances on 
this topic developed at our research group are 
also pointed out. 

2.  Detection in spatial multi-
plexing MIMO systems

In a spatial multiplexing MIMO system, the data 
stream is split equally into nt transmit antennas 
and simultaneously sent to the channel, thus 
overlapping time and frequency. The signals 
are received by nR receive antennas, as shown in 
Fig. 3, and the receiver has the task of separating 
the received signals in order to recover the trans-
mitted data.  

The above presented system has usually an equi-
valent baseband model denoted as 

x=Hs+v,
￼                                                              (1)

where s represents the baseband signal vector 
transmitted during each symbol period formed 
by elements chosen from the same constellation, 
such as QAM. Vector x in (1) denotes the received 
symbol vector and v is a complex white Gaussian 
noise vector with zero mean and power No. For 
the sake of simplicity, the noise is considered to 
have unit variance. The Rayleigh fading channel 
matrix H is formed by nR x nt complex-valued ele-
ments, hij, which represent the complex fading 
gain from the j-th transmit antenna to the i-th 
receive antenna. Moreover, the channel matrix  
H is considered known at the receiver. 

As said above, MIMO detectors are in charge 
of separating the transmitted signals with the 
lowest Bit Error Rate (BER). It is known that Maxi-
mum-Likelihood (ML) detection over Gaussian 
MIMO channels has shown to get the lowest BER 
for a given scenario. However, it has a prohibiti-
ve complexity which grows exponentially with 
the number of transmit antennas in the MIMO 
system. Motivated by this, there is a continuous 
search for computationally efficient optimal or 
suboptimal detectors, which is a current line of 
research in our group. In what follows, a state of 
the art review of MIMO detection algorithms is 
carried out and some efficient detection sche-
mes developed by ourselves are presented. 

2.1. Overview of MIMO Detection algorithms
It can be seen in Fig. 3 that the receive antennas 
see the superposition of all the transmitted sig-

  Figure 2. Example of distributed network coordi-
nation for a multi-cell system with three BSs

  Figure 3. Spatial multiplexing MIMO system model with nt transmit antennas 
and nR receive antennas.
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signal and the rest of signals as interferers [8]. 
The main goal of this detector is setting the in-
terferers amplitude to zero and this is performed 
by inverting the channel response and rounding 
the result to the closest symbol in the alphabet 
considered. When the MIMO channel matrix is 
square (nR = nT ) and non-singular, the inversion 
step is performed just using the inverse of the 
channel matrix. However, when the channel ma-
trix is tall (nR > nT ), the pseudo inverse of H is 
then used. The ZF detector presents the problem 
of, in some cases, dealing with singular channel 
matrices that are not invertible. 

Another disadvantage is the fact that ZF focuses 
on cancelling completely the interference at the 
expense of enhancing the noise. Motivated by 
this, the MMSE detector appeared. The MMSE de-
tector [8] minimizes the error due to the noise and 
the interference combined. The performance of 
already presented algorithms (ZF and MMSE) can 
be further improved by using nonlinear techni-
ques as symbol cancellation [9]. By using symbol 
cancellation, an already detected and quantized 
symbol from each transmit antenna is extracted 
out from the received signal vector, similarly to 
what is done in decision feedback equalization or 
multiuser detection with successive interference 
cancellation (SIC). Therefore, as soon as a signal is 
detected, the next one will see one interferer less. 
However, nulling and cancellation detectors have 
the drawback of adding interference to the next 
symbols to be detected, when there has been 
any wrong decision in the already detected sym-
bols. It can be shown that it is advantageous to 
find and detect first the symbols with the highest 
signal to noise ratio, i.e., the most reliable ones. 
This strategy is known as nulling and cancellation 
with ordering (O-SIC) [10]. 

2.2. Sphere Decoding Algorithms
The most recent detection algorithms are the 
well-known tree search or Sphere Decoding (SD) 
algorithms. The main interest of SD methods is 
that instead of performing an exhaustive search 
over the total nT-dimensional lattice points, these 
methods [11] limit the search for the solution to 
only the lattice points located within a distance 
of the received vector lower than a given maxi-
mum distance, called sphere radius. For instan-
ce, Fig. 5 shows the lattice points of a 2x2  MIMO 
system using a BPSK constellation. It can be seen 
that if a sphere radius R  is chosen, there are only 
two lattice points that lie inside the sphere, the-
se two points represent the candidate solutions. 
The ML solution would then be the closest latti-
ce point of the list of candidate points, which is 
labelled in the figure as ML. These methods can 
substantially reduce the detection complexity, 
however, it is necessary to find a suitable value of 
the sphere radius, what can be difficult in prac-
tice. 

The search inside the decoding sphere can be 
performed via a search in a tree, which is built 
according to the number of transmit antennas 

nals. Given the received signal x, the detection 
problem consists in determining the transmitted 
vector ŝ with the highest a posteriori probability. 
This is typically carried out in practice by solving 
the following least squares problem 

     
(2)

where ŝ is an nT -dimensional vector with entries 
belonging to a M-ary alphabet. Eq. (2) is often ca-
lled the Maximum Likelihood detection rule. 

Fig. 4 shows the classification of nearly most of 
the existing MIMO detection algorithms. In a 
first level, detection algorithms can be classified 
between ML (or exact) methods and almost ML 
methods. A second classification depends on 
the way of performing the detection that can be 
either in a linear way (just multiplying by a ma-
trix in reception) or carrying out a successive in-
terference cancellation (SIC) or via a tree search 
(Sphere Decoders).  
￼

The Maximum Likelihood (ML) detector via 
exhaustive search is the optimum detector in 
terms of BER since it gets the exact solution of 
the ML detection rule (2). Due to the fact that all 
the possible s vectors belong to a finite nT -di-
mensional lattice, the simplest way of finding 
the solution of (2) is performing an exhaustive 
search of points in the lattice and selecting the 
one that minimizes (2). This strategy leads to a 
very complex algorithm, with a computational 
cost exponentially growing with the number of 
transmit antennas. Alternative detectors have 
been developed in order to decrease this high 
cost in spite of loosing performance. 

The Matched Filter (MF) detector for MIMO appea-
red as an extension of this detector in SISO chan-
nels [8]. The detection step is carried out just by 
multiplying the received vector by the transpose 
and conjugate of the channel matrix. Also, a quan-
tization step is needed to round off the result to 
the closest symbol in the alphabet considered. This 
algorithm exhibits near optimum behavior when 
the columns of H are close to be orthogonal. 

The Zero Forcing (ZF) detector considers the 
signal from each transmit antenna as the target 

  Figure 4. Classification of MIMO detection algorithms.
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and the size of the constellation employed. In 
the decoding tree, partial candidate solutions 
are represented as nodes and branches connec-
ting two nodes have an associated weight that 
measures the distance to each partial candidate 
solution to the received vector. The addition of 
all the branch weights that belong to a tree path, 
called path weight, is compared to a maximum 
value (sphere radius), thus discarding the path 
when this maximum value is exceeded. 

Fig. 6 depicts the decoding tree associated to the 
decoding sphere of Fig. 5, note that the tree will 
have as many levels as transmit antennas in the 
system and each node will have as many children 
nodes as the constellation size. It can be seen 
that the search for the solution is performed in 
two levels, in each level branches that lead to a 
path weight higher than the sphere radius are 
discarded, resulting in less candidate solutions.  
￼
Different tree search strategies have been propo-
sed, some of them can be found in [11], [12] and 
[13] but they can be classified into two main ty-
pes of tree search: Depth-First and Breadth-First. 
In the Depth-First algorithms the tree is explored 
beginning from the root descending to the leaf 
nodes, but exploring every child node from left 
to right. On the other hand, in the Breadth-First 
algorithms the tree is explored descending level 
by level up to the leaf nodes, every branch in the 
same level has to be checked before starting to 
visit the following level. 

K-Best algorithm [12] is a Breadth-First tree 
search algorithm that stores at each level of 
the tree only those K paths that show the sma-

llest path weights (K-Best paths). Note that this 
method is not an actual sphere decoder, since 
now the candidate solutions are not discarded 
using a sphere radius but having a list with a 
fixed number of stored paths up to the current 
level. The detected signal vector ŝ  is given by the 
path from the root up to the leaf node with the 
smallest path weight. The main advantage of this 
method is that the maximum number of paths is 
limited, that yields a fixed computational effort 
and makes the algorithm hardware implementa-
tion easier. Variants of this algorithm also include 
a sphere radius in order to reduce the number of 
explored paths [14] but unfortunately, this num-
ber is then non-fixed and unknown. 

Regarding our recent research, it has been 
mainly focused on improving both the detection 
performance and the efficiency of K-Best algo-
rithms. Some novel schemes will be presented 
throughout the following subsection. 

2.3. Efficient detection schemes developed at 
the iTEAM
As it was shown in [15], the channel matrix con-
dition number is strongly related to the perfor-
mance of suboptimal detection schemes, since 
it is a measure of how the original constellation 
is distorted after being transmitted through the 
channel. It can also be shown that the condition 
number increases with the size of the channel 
matrix [16], so for a higher number of antennas, 
the detection degradation will increase. 

Currently, our research is focused on classifying 
channels according to their condition number, in 
order to only employ high cost detectors when 
they are strictly necessary. As an example, in [17] 
we proposed a combined detector that always 
works with a K-Best detector but it can select a 
low value of K while working with well-conditio-
ned channels and switch to a higher value of  K 
when the channel is ill-conditioned. This way, a 
greater decoding tree is visited when dealing 
with poor quality channels, thus there is less pro-
bability of discarding the ML solution too early. 

With the aim of making the proposed detection 
schemes implementable in practical systems, 
we are also working towards the design of effi-
cient estimators of the channel matrix condition 
number. Some condition number estimators to-
gether with different methods of choosing the 
threshold condition number that determines 
the border between good and bad channels 
appear in [18]. 

If the columns of the channel matrix H are con-
sidered as the bases of a lattice, Lattice Reduc-
tion (LR) strategies can be used to transform the 
channel matrix H into a new channel matrix 

=HT with more orthogonal columns, where 
T is an unimodular transformation matrix (det(T) 
= ±1). Considering the transformation matrix T  
into the system model (1), the received signal 
vector x can be rewritten as 	

  Figure 5. Decoding sphere of radius R for limiting 
the candidate lattice points in a 2x2 MIMO system 

using a BPSK constellation.

  Figure 6. Decoding tree associated to the deco-
ding sphere of Fig. 5.
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nique that intends to null the interference expe-
rienced by one user from the rest of users, just 
pre-cancelling these last ones at the transmitter. 
For a given encoding order, if DPC is successively 
applied to the second, third and following users, 
only the interferences produced by those who are 
placed above can be cancelled. In order to cancel 
the interferences introduced by users placed be-
low, a LQ decomposition of the channel matrix is 
previously calculated, and an equalization of the 
Q matrix is carried out in order to obtain a lower 
triangular channel matrix. This type of precoding, 
commonly known as Zero Forcing Dirty Paper 
Coding (ZF-DPC), is shown in Fig. 8 and it has 
been proved to achieve maximum sum-rate in a 
multi-antenna multi-user network [23]. 

Assuming M users, MU-MIMO systems capacity 
are limited by an M-dimensional region, whe-
re each point represents a vector formed by 
the set of rates simultaneously reached by the  
M users. The capacity region boundary, called 
sum-capacity, is an important feature since it 
represents the set of points where the sum-rate 
is maximum. The main results of the capacity in 
MU-MIMO systems, from an information theory 
point of view, can be found in [24,25]. 

It is well known that if global CSI and complete 
knowledge of the transmitted signals are availa-
ble at the transmitter side, DPC is optimum in the 
sense that achieves the maximum value in the 
system capacity region [26]. However, in a coor-
dinated network where the BSs are distributed 
in several cells, global CSI requirement means 
that heavy traffic load must be supported by the 
connecting backbone. Moreover, instantaneous 
estimation of all the BSs fading gains is needed 
due to the time-variant nature of wireless chan-
nels, but instantaneous transmission of them 
seems extremely inconceivable. 

3.1. Dirty Paper Coding in distributed coordi-
nated networks
Nowadays, our research is aimed at coordination 
techniques which require only local channel in-
formation to exploit the benefits of coordinated 
multi-cell systems. In this case, each user still 
needs to feed back its channel with respect to 
each BS, but system complexity is reduced since 
a quite lower backbone traffic is needed. 

Consider a wireless or mobile communication sys-
tem with N BSs equipped with Na antennas and M 
single-antenna users. In our distributed network 
coordination approach, BSs know their own local 
channel matrix, ignore the rest of the BSs chan-
nels, and only exchange user data and synchroni-
zation information with the global network. Then, 
received signals at the M users transceivers can 
be expressed by means of vector y as:
 

￼                                                                       (4)

x = HTT -1z+v =  z+v,     
(3)

where the symbols to be detected become z= 
T-1s Note that the transformation T does not 
affect the observations vector x.

Authors in [19] showed that the performance of 
K-Best detector can be substantially improved by 
performing a previous LR of the channel matrix, 
at the expense of increasing the preprocessing 
complexity. Following the idea of the above des-
cribed detector, we are implementing a Lattice-
Reduction-Aided (LRA) detector based on con-
dition number that always works with a K-Best 
detector but it performs a LR of the channel ma-
trix only when the channel is bad-conditioned. 
As in the already proposed scheme, a previously 
selected threshold determines good-conditio-
ned and bad-conditioned channels. There exist 
several LR methods, in our work we are consi-
dering the use of either LLL [20] or Seysen’s [21] 
algorithms. 

Recently, the iTEAM has purchased a Software-
Defined-Radio 2x2 MIMO prototype, depicted in 
Fig. 7. This prototype is going to be employed to 
test in a real environment most of the software for 
MIMO systems implemented in our group, in order 
to analyse the limitations of the algorithms under 
real conditions and to help us with the task of im-
proving them as much as possible.  The purchased 
system requires important work before being sui-
table for performing real testing of MIMO algori-
thms, thus, making it work properly is one of the 
current challenges of the research group. 

3. Multi-User Coordinated 
MIMO Systems

As seen in section 1, cancelling or minimizing 
inter-user interference is necessary in MU-MIMO 
systems. Dirty Paper Coding (DPC) [22] is a tech-

  Figure 7. MIMO 2x2 prototype at the GTAC laboratory of the iTEAM
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where y is a vector whose M elements are the 
received symbols of each users, and Hk is the 
channel matrix at the k th BS, whose M x Na 
elements, h(i,j), describe the signal fading from 
the j th BS antenna to the i th user. Vector x in-
cludes the precoded information symbols and 
n is the received noise, which is spatially and 
temporally white and is also uncorrelated with 
the signals. 

In this scenario, ZF-DPC is locally calculated at 
each BS for user local channels involved, so users 
receive different contributions without interfe-
rence. As in practical systems, the available maxi-
mum transmitted power is limited, so a sum-
power constraint has to be imposed (Pmax  in Fig. 
8). From the point of view of sum-rate maximiza-
tion, a fair distribution of the available transmit 
power between all the BSs should be the best 
choice since the network is not aware of the local 
channel magnitudes. 

Another field of research is the analysis of how 
much limited feedback is needed in order to re-
duce the amount of necessary information in the 
system but keeping good performance in sys-
tem capacity. In this sense, we are also studying 
the sum-rate in systems whose users only feed 
back those channel amplitudes that are higher 
than a threshold. This case implies a trade-off in 
the system between cancelling interference and 
distributing the power efficiently [27]. 

4. Conclusion

Throughout this paper an overview of MIMO 
wireless techniques has been presented. The 
challenges of MIMO systems where our research 
is mainly concentrated have been highlighted. 
Especially, the problems of efficient detection in 
point to point MIMO systems and interference 
cancellation in coordinated MU-MIMO systems 
have been discussed. Finally, some of the solu-
tions to these problems that have been carried 
out at the iTEAM and future research lines have 
been also pointed out.
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