
Abstract

The characterization of the signals in terms of linear/
nonlinear and deterministic/stochastic nature may be
appropriated for knowledge extraction and machine
learning algorithms. Some real-world signals exhibit signal
modality characteristics that are strongly related with the
physical mechanisms involved in the production of them.
As an example, we can mention how the resonant sounds
are more predictable than the vibrating sounds, or how the
determinism of ultrasonic scans decreases as the porosity
of scattering materials increases. In these situations the use
signal modality derived parameters may have an easier
interpretation than frequency or statistical derived
parameters. In this work, we have chosen the Recurrence
Plots and the Recurrence Quantification Analysis as a
feasible alternative to extract signal modality information.
We have successfully applied this technique in a couple of
situations: characterization of maritime mammals calls, and
measuring the porosity of materials by means of ultrasonic
inspection.

Keywords: Signal processing, Signal modality character-
ization, Nonlinear analysis, Recurrence Plots, Recurrence
Quantification Analysis.

1. Introduction

Signal modality characterization is an emerging and
interdisciplinary field that tries to address the problem of
detecting the presence of underlying nonlinear generation
mechanisms in a given signal. This is mainly produced by
deterministic chaos or by stochastic nonlinear dynamical

systems. The study of these phenomena has been
avoided during many years and yet it is a common
practice to model such processes using suboptimal, but
mathematically tractable models. However, an adequate
detection and characterization of the nonlinear and
deterministic nature of the signal can convey important
information in a large number of situations such as: early
symptoms of epileptic detection with EEG signals [1],
nonlinear phenomena in mammalian voice production [2],
stock market predictability [3], etc. 

Many different authors have work on this topic
employing different techniques. One of the first and most
used methods is the surrogate data bootstrapping
method. It basically consists on comparing a test statistic
computed for an original time series and for an ensemble
of surrogate data [4], which are data artificially generated
in a way that mimics most of the characteristics in the
original signal. The null hypothesis is that the surrogate
data may be a typical realization of the same system
generating the original signal. If the test statistic fails to
validate the null hypothesis, then the data in test is very
likely to differ in signal modality. Care must be taken
when using surrogate data to ensure that statistical
differences come from the desired characteristic and not
from an undesired one, such as a failure of the surrogate
algorithm to mimic non-stationary data.

Different kinds of surrogate generation algorithms have
been devised depending on the feature being studied:
linearity [5, 6], stationarity, determinism, chaos, etc.
Surrogate data generation algorithms for testing linearity
are the well-known AAFT and iAAFT, surrogate data
generation algorithms for testing  pseudo-periodic or
oscillating time series are the PPS [7], and the TSS [8] and
even surrogate data generation algorithms which test
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fluctuations and trends in the data have been developed,
SSS [9]. Some of the most sophisticated statistical
measures applied in linear analysis are: the Kaplan’s �-�
method [10], the Deterministic Versus Stochastic plots
[11], or the Delay Vector Variance (DVV) [12]. 

A recently new approach for signal modality characte -
rization consists in the use of the Recurrence Plots (RP) as
well as the Recurrence Quantification Analysis (RQA). The
RP has proven to be a valuable data visualization and
analysis tool in the study of complex, time-varying
dynamical systems in a large number of disciplines such us:
biology, neuroscience, engineering, finance, geosciences,
etc. Recently it has been demonstrated that one of the
aforementioned techniques for signal modality characte -
rization (the DVV) can be formulated using RP concepts
[13]. This opens new horizons to achieve a better analysis
of the signal modality and to develop new nonlinearity tests
based on the RP and RQA.

In this work, the RP tool is introduced as well as some
examples of its application on real signals. In particular,
signal modality analysis based on RP has been applied on
marine mammals vocalizations (Section 3) and non-
destructive materials inspections (Section 4).

2. Recurrence Plots

The RP representation of a time series x (t) was firstly
introduced by Eckmann et al. (1987). Further variations
of the RP have been proposed, but one of the most

commonly used can be formulated as follows. Let x (t)
be the time series of duration N. We can obtain the Delay
Vector (DV) at instant i for an embedding dimension m
and a time lag τ as:

x(i)=[x(i), x(i+τ), x(i+2 • τ),…, x(i+(m-1) • τ)]  (1)

The distance plot (DP) can be computed by taking a norm
among all possible combinations of the DVs.

DP(i, j) =‖x(i) -x( j)‖, x(i)��m,i,j =1,…, N-m• τ (2)

We have used in this work ‖•‖ as the L2-norm. Some
authors also call this plot the global recurrence plot.
Using DP (i, j) the RP can be computed as:

RP(i, j) = �(�-DP (i, j )) (3)

Where �(•) is the Heaviside step function and � is a
given recurrence threshold. Among some other
advantages, the RP representation maps the phase
space diagram in �m into �2. This offers a better way
to analyse complex systems independently of the
embedding dimension.  The recurrence of states, or times
when the phase space trajectory visits roughly the same
area, are indicated as black points in the RP. As a result of
that, the underlying dynamical system can be analysed/
characterized by measuring the number and duration of
recurrences. The Figure 1 panel (A) shows a fragment of
the space trajectory representation of the Rössler system
(in blue). The Figure 1 panel (B) shows the RP repre -
sentation of the fragment of the Rössler system. In this
panel, the black dots indicate that two states are within a
given distance � (computed using a given norm). When
two trajectories run parallel to each other for a given
number of states it produces diagonal lines in the RP. The
red and green regions in the Figure 1 illustrate this idea.
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The Recurrence Plots has proven to be a valuable data vi-
sualization and analysis tool in the study of complex
dynamical systems.
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Figure 1. (A) Segment of the phase space trajectory of the Rössler system (for standard parameters b=0.2) by using its three
components and (B) its corresponding recurrence plot. The points in a trajectory in (A) that run parallel within a ε distance are
mapped as diagonal black lines in (B). Here we have highlighted two regions in red and green colours to illustrate this idea.
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2.1. Structures in Recurrence Plots and Recurrence
Quantification Analysis

The initial purpose of RPs is the visual inspection of
higher dimensional phase space trajectories. The view on
RPs gives hints about the time evolution of these
trajectories. The advantage of RPs is that they can also
be applied to rather short and even non-stationary data.

The RPs exhibits characteristic large-scale and small-scale
patterns. The large-scale patterns can reveal information
about homogeneity, periodicity, etc. The small-scale
patterns (the texture) is formed by single dots, diagonal
lines, vertical and horizontal lines. The presence of single
dots occurs if the states are rare, if they do not persist
for any time or if they fluctuate heavily. However the
presence of diagonal lines occurs when a segment of the
trajectory runs parallel to another segment. The length
of this diagonal line is determined by the duration of such
similar local evolution of the trajectory segments. Finally
the presence of a horizontal (or vertical) line marks a time
length in which a state does not change or changes very
slowly. These small-scale structures are the base of the
quantitative analysis of the RPs (RQA).

Among all the different measures of recurrences that
compose the RQA, there is one that will be of special
interest in the described applications: the percentage of
points which form diagonal lines. As we have stated, the
appearance of diagonal lines implies similar evolution of
states at different times, which could indicate that the
process is deterministic. This can be quantified as the
percentage of recurrence points that form diagonal lines
(DET):

(4)

Where P(l ) is the histogram of the lengths l of the
diagonal lines and lmin is the minimum length the
diagonal needs to have to be considered a proper
diagonal line (typically lmin=2).

3. Signal modality application to the
characterization of maritime

mammals calls.

The study of the way cetaceans produce their sounds is a
complex field of study. Evolution has provided maritime
mammals with highly sophisticated sound production
organs specially adapted to make underwater sounds. The
knowledge of these organs and how they work is a key
factor to understand the different repertory of sounds and
what they use the different sounds for. This knowledge
has been partially achieved for a limited number of species
(toothed whales) and it is still an open field.

In a very summarized way, Norris and colleagues [14]
showed that the sounds were generated by a source above
the face of the dolphins, this discovery was later corro -

borated by Diercks [15], using a set of hydrophones to locate
the sound source in a location inside the nostril. It was
Cranford in [16] who identified a homologous anatomical
structure in a wide range of species toothed. This structure
was called “Monkey-Lips-Dorsal-Bursa” (MLDB), formed by
the “phonic lips” and membranes “dorsal bursae” system
that is duplicated in all species of toothed whales except the
sperm whale “Physeter macrocephalus”.

Two ways of producing sounds in cetacean species are cited
in the literature. The first way is moving the air inside the
nasal tubes, changing pressure between the air sacs placed
at the end of the nasal cavities causing the vibration of the
MLDB system located therein [17], [18]. The second way is
generating resonances [19], [20] in the nasal cavities where
sound production happens by resonating volumes of air.
This means that these sounds are produced without the
excitation or vibration of any membrane. It might be
possible to identify which one of these mechanisms was
employed for the generation of a given cetacean sound. If
the sound was produced by a vibrating element, the sound
should have a clear and recognizable pitch. On the other
hand if resonating volumes of air produced the sound, no
pitch should be detected. 

The identification of the mechanism that generates the
sound can also be addressed using signal modality
characterization through the study of the structures
appearing in the RPs. In order to demonstrate this idea,
the two different sounds (resonating and vibrating
sounds) have been recorded under a controlled and
repeatable experiment at the Oceanogràfic of Valencia.
In Figure 2 we can see an example of two of the sounds
in time and frequency domain. The signal (A) has been
produced by resonances, so the shape of the signal is
quite sinusoidal because when a resonance is produced,
only the first harmonics are propagated (B). In a different
way, the signal (C) is made by vibrations, so the shape in
time domain exhibits different pulses. In the frequency
domain that behaviour corresponds to representations
formed by many harmonics as is showed in (D).

Counting the number of harmonics in the frequency
domain can be used to distinguishing between these two
sounds. If the number of harmonics is high we can affirm
that the sound was produced by a vibrating element. If the
number of harmonics is low we can almost be sure that
the sound was produced by a resonance. This approach
needs a threshold that has to be empirically established.
This can be a problem in some situations due to the fact
that this threshold depends on many factors such as the
gender, the age or the sound level of the individual. 

The use of the signal modality for knowledge extraction
is not a common practice. Nevertheless, the noticeable
difference between the signals in phase space and how
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The identification of the mechanism that generates the
sound can also be addressed using signal modality
characterization through the study of the structures
appearing in the Recurrence Plots.
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this affects the RPs and the RQA makes this technique
an adequate way of identifying the presence of a
vibrating element in the sound production of beluga
whales. An example of RP obtained for the above signals
is shown in Figure 3. The RP have been obtained using
� as a 10% of the maximum phase space diameter [21].

The determinism parameter can be a useful way of
distinguishing between sounds produced by resonances
and those produced by vibrations. To demonstrate and
evaluate that, we have computed the DET parameter for
five vibratory and five resonant sounds. The Table 1 gives
the results, where it can be seen the mean and the standard
deviation of the DET parameter allows an easy classification.

Table 1: Results of determinism parameter ( DET ) ob-
tained for the resonant and vibratory sounds produced
by the beluga whales.

4. Signal modality application to
measure the porosity of cement

materials.

A novel and completely different application of signal
modality analysis is the study and characterization of
scattering materials, particularly, concrete. Concrete is a
non-homogeneous material prepared by mixing cement,
aggregates and water used mainly in the field of civil and
building engineering [22]. The water to cement ratio and
cement to aggregate ratio are important variables on
concrete design which will determine its mechanical and
physical properties. Due to its non-homogeneous
structure and its manufacturing process, this material in
its hardened state is composed by air voids, interfaces
between aggregates and hydrated cement paste, micro-
cracks and other defects inside its micro structure. For
that reason, concrete is a very dispersive material and
hard to measure (in order to know its physical and
mechanical conditions) indirectly with traditional Non-
Destructive Techniques (NDT) [23]. This application aims
to combine traditional techniques of NDT, particularly
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                                    Beluga whale sounds

                              Resonant                Vibratory

DET              0.95±0.011              0.71±0.108

Figure 2. (A) Resonant sound in time domain and (B) in time-frequency domain. (C) Vibrant sound in time domain
and (D) in time-frequency domain.
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inspections based on ultrasounds, with a later analysis of
signal modality.

Ultrasounds are acoustic waves which propagate as
vibrations through mechanical materials, resulting of
compression and relaxation of the particles composing
the propagation medium. Due to its wave nature,
ultrasounds show physical phenomena such as reflection,
refraction, diffraction and interference, which depend on
the inner material structure. Figure 4 shows a typical
pulse-echo ultrasonic inspection setup for a scattering
material analysis.  In an ultrasonic inspection, the input
pulse undergoes variations related to the internal
microstructure of the specimen as it propagates through
the material. Each grain behaves like a scattering center,
producing an echo that, when superimposed on other
echoes coming from other grains, conforms what is
called grain noise. Similar situations are found in other
related fields such as ultrasonic B-scans (speckle) and in
radar (clutter) [24]. 

In order to show the viability of this application we have
considered a cement with a mechanical compression
resistance equals to 32.5 MPa and two different
water/cement ratios (w/c), 0.4 and w/c 0.5. So that,
there are two cement paste types with different porosity
(30.73% and 37.63%, respectively). The selection of an
input frequency equals to 10 MHz is justified by the need
to obtain enough grain noise in the receiving B-scans.
This can be guaranteed by working in the Rayleigh region
according to the relationship between the wavelength
and the mean grain size.

Figure 5 compares the phase space, computed using
Equation (1), of the ultrasonic signals measured in the
two different specimens. It must be noticed that both
trajectories follow decreasing trajectories (due to the
characteristic decreasing exponential envelope of the
signal), but both graphs differs on its smooth. The left
graph corresponds to the specimen built with a w/c ratio
equals to 0.4 (porosity equals to 30.73%) and the right
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Figure 3.(A) Segment of the phase space trajectory of a resonant sound by using its three components and (B) its cor-
responding recurrence plot. (C) Segment of the phase space trajectory of a vibrant sound by using its three components
and (D) its corresponding recurrence plot.
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graph corresponds to a specimen built with a w/c ratio
equals to 0.5 (porosity equals to 37.63 %). The presence
of higher number of pores results in a clear sign of
randomness. This fact represents the hypothesis to think
that the degree of determinism can provide a measure
proportional to the porosity of the material, and
therefore, related to its mechanical properties. 

In order to measure the degree of determinism as it was
established in the Section 2.1 and having computed the
phase spaces (Figure 5), the Recurrence Plots must be
computed, Equation (2) and (3). The RP presents as forms
of diagonal lines the recurrence states that appear along
the signal. Figure 6 illustrates the distance plots (Equation
(2)) obtained from the above phase space plotted in a
colormap graph. As expected, in the case of less w/c ratio
(left graph) the diagonal lines appear in a more orderly
and smoother way than in the right graph. Furthermore,

it must be noticed that the diagonal lines are not equally
distributed over the whole signal but they are focus on a
temporal interval that corresponds to the higher
amplitudes of the signal. Using a non-Euclidean distance
may help to alleviate that “banding effect” due to the
non-stationarity of the ultrasonic signal. 

In order to illustrate this, Figure 7 compares the concept
of applying the Euclidean distance in the expression of
the DP (A), and the concept of using a new approach
for computing the RP based on the angular distances
(B). Using the Euclidean distance causes that only the
closest points in the phase space are taken into account
and not those that also follow similar paths but with
different amplitude values. Therefore, the study of the
diagonal lines appearing in the DP based on the
Euclidean distance is not appropriate for non-stationary
signals. On the other hand, Ioana et al. [25] propose a
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Figure 4. A pulse-echo ultrasonic inspection of scattering material and an example of the resulting signals.
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new approach for computing the RP based on the
angular distances. So that, the proximity between points
in the phase space stop being proportional to the
Euclidean distance and is measured by the solid angle
which they form with the origin Figure 7 (B). 

The Equation (5) shows how to compute this angular
distance plots (DPang).

(5)

The main advantage of this distance is that it highlights
similar signals having resembling trajectories, as it is the
case of transient signals with the same shape but with
different amplitudes which would not have been
emphasize otherwise (Figure 6).

Figure 8 shows the DPang from the same ultrasound
signals whose DP was shown in the Figure 6. At a glance,
it can be noticed that diagonal lines now are almost
uniformly distributed in both graphs. This allows computing

the DET parameter, but using DPang instead of DP when
computing the RP. Moreover, the results of the parameter
DET, Equation (4), are proportional to the inner structure
of each specimen. In the case of a w/c ratio equal to 0.4,
DET results in 0.97, and in the case of a w/c ratio equal
to 0.5, DET is 0.93 (see Table 1). Both values of the
parameter are close to 1, which means that the measured
grain noise has a predominant deterministic component in
comparison with the stochastic component, what seems
logical taking into account the completely deterministic
input signal. Furthermore, both results are similar but not
identical since the difference in the degree of porosity was
not larger than 7%.

Table 2: Results of determinism obtained for the ma-
terials under study, compared to its porosity values.
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‖x(i) •x( j)‖DPang(i, j) = –––––––––, x(i)��m,i,j =1,…, N--m• τ
x(i) •x( j)

                                    Water/Cement Ratio

                                   0.4                           0.5

Porosity (%)             30.73                       37.63

       DET               0.98±0.005              0.93±0.006
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Figure 6. (A) Distance Plot of an ultrasound signal measured in a w/c 0.4 sample. (B) Distance Plot of an ultrasound
signal measured in a w/c 0.5 sample. m=2 τ=11 .
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5. Conclusions

We have illustrated how the signal modality derived
parameters may play a key role when trying to characterize
complex real-world signals from complex processes. We
have presented two real applications. In the first one we
have shown how the determinism parameter allows
distinguishing between resonant and vibrating sounds in
beluga whale calls, without no need to count for resonances
in the frequency domain. In the second one, we have
employed a more complex approach that uses the angular
distance recurrence plots for computing determinism. This
allows overcoming the problem of variations in the diagonal
line lengths due to amplitude modulations. Thanks to this
approach we can use the same RQA parameter in problems
where the signal is non-stationary, such us the ultrasonic
inspection of dispersive materials.
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