
Abstract

Cellular systems are continuously advancing towards the
self-organization of their management, operation and
maintenance, in what is known as Self-Organizing
Networks (SON). In this sense, significant efforts are being
made to standardize self-organization for which the 3rd
Generation Partnership Project (3GPP) has included some
use cases of particular relevance. It is within these use
cases where load balancing especially stands, since it is
crucial to relieve cell congestion and has an impact on
network performance, mainly in interference-limited
systems, such as Universal Mobile Telecommunication
System (UMTS). This paper provides an overview of
practical load balancing in UMTS, describing an actual
implementation carried out by Astellia company and
showing its impact on an operative network. The results
show the enormous potential of self-organizing systems
and encourage further research in this direction.

Keywords: Load balancing, self-organizing networks,
SON, reinforcement learning.

1. Introduction

In current mobile communication networks, most of
network parameters are manually controlled based on a
centralized Operation, Administration and Maintenance
(OAM) architecture. Traditionally, network optimization
is performed based on drive testing. This is about
performing a set of controlled trials, which implies
moving a benchmarking group on a car while making
phone calls and using mobile data connection and then

analyse network performance. This approach had the
advantage of having a user perspective since the data are
collected directly by a user equipment. However, using
only drive tests caused that the information available by
the operator was completely biased, since the data were
not obtained from real users, nor the entire network was
covered and, furthermore, the information processing
and analysis is slow and usually only manually made.

Due to these reasons, the OAM procedures changed to
obtain a more realistic view of network status. New
solutions are based on processing information collected by
various network equipment, either as counters or even as
network traces [1]. These solutions involve less investment
in resources and the possibility to cover larger projects. 

With these traces collected from the network, the next
step forward was the inclusion of self-organization, in
which is referred to as SON. SON features aim at
automating, as much as possible, the processes of self-
configuration, self-optimization and management as a
way of reducing installation costs (CAPEX) and operating
costs (OPEX). In this sense, SON functionality will involve
providing mobile communication networks a level of
“intelligence” much higher than current networks. In
order to consolidate its usage, the 3GPP started the
standardization of SON in Long Term Evolution (LTE)
Release 8 and continued in Release 9 and beyond.
Although this standardization has been mainly focused
on LTE, its functions can be implemented in other
systems such as UMTS. The overall process of auto-
configuration (basic and radio) and self-optimization of
a base station is included in the 3GPP specification TS
36.300 [2]. In addition, the specification 3GPP TS 36.902
[3] lists nine additional use cases:
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• Coverage and Capacity Optimization (CCO)

• Energy Savings (ES)

• Interference Reduction (IR)

• Automated Configuration of Physical Cell Identity
(ACPCI)

• Mobility Robustness Optimization (MRO)

• Mobility Load Balancing Optimization (MLBO)

• Random Access Channel (RACH) optimization

• Automatic Neighbour Relation (ANR)

• Inter-Cell Interference Coordination (ICIC)

This paper focuses on one of the above-mentioned
algorithms, the MLBO. A significant number of papers in
the literature have addressed the correction of congested
cells, most of which have focused on improving coverage
and capacity in general for Global System for Mobile
communications (GSM) [4], Code Division Multiple
Access (CDMA) [5] and High Speed Downlink Packet
Access (HSDPA) [6]. The authors of [7] propose a scheme
for tilt adjustment from a centralized server that has a
comprehensive knowledge of all system settings. The
problem is that the necessary signalling and data used
for this decision is not discussed. On the other hand, in
[8] and [9] this change of tilt, for CDMA and HSDPA
respectively, is also studied. The tilt mechanism proposed
is based, in both cases, on the basic idea of increasing
tilt to reduce the coverage and distribute the load to the
neighbouring cells. These forms of totally uncoordinated
tilt settings are not only suboptimal for system
performance, but also have shown ineffective and clearly
dangerous since they can adversely affect the load of the
cell to which traffic overflows. In [10], the author showed
a method for optimizing the tilt based on measurements
obtained from terminals. In this paper, an extended local
search was carried out and each solution obtained from
a cost function is accepted with a given probability. As
the search continues, better solutions are accepted and
the algorithm runs until no new improvements in the cost
function are found. The results presented in the paper
can be seen as self-organization, but are far from being
implementable in a system operating in real time, and
still do not solve the problem of efficient detection and
quick reaction to a congested situation. 

This paper presents the current version of the Astellia
MLBO algorithm based on the use of standardized
mobility parameters such as reselection/handover
parameters, Common Pilot Channel (CPICH) or a hybrid
solution of these parameters. This function distributes the
load from congested cells towards neighbour cells with
a lower congestion index. This allows that load of cells is
balanced while increasing capacity of the system and
under minimum human intervention in network
management and optimization tasks. The solution
presented in this paper is based on a Markov Decision
Process (MDP), namely reinforcement learning-based
algorithm. This algorithm, inspired by behaviourist
psychology, models a decision-making process that

chooses different alternatives with the objective of
maximizing some cumulative reward. Note that the
solution presented in this document only focuses on an
intra-frequency and intra-Radio Access Technology (RAT)
approach.

2. Load Balancing Algorithm

This section details the algorithm implementation. The
MLBO algorithm is structured in five different parts, as
can be seen in Figure 1: data loading, pre-processing,
Call-trace UMTS Prediction (CUP), transition matrix
construction and load balancing. 

As shown afterwards, the load balancing algorithm is a
MDP-based algorithm in which different actions are
taken to maximize a cost function. In this case, the
actions are taken based on a transition matrix known
hereafter as T matrix. This matrix is used to select the
best action from the load balancing point of view. 

First, in the data loading part, data are taken from
topology databases and from the call trace information.
Then, in the pre-processing part, data are prepared for
being efficiently ingested by next phases. Third, the CUP
solution is used to obtain the total Uplink/Downlink
(UL/DL) cell load as well as the load that each individual
call added to the cell. Afterwards, in the transition matrix
construction part, a T matrix is filled for each cell with an
estimation of the effect on cell load of a certain change in
the radio conditions. Finally, the load balancing algorithm
is executed. The details of the CUP algorithm and the
procedures of the MDP are presented in Sections 2.2 and
2.3. Section 2.4 is dedicated to the load balancing
execution. Before that, the detection procedure is detailed.
It will identify which cells need to be adjusted by the MBLO
algorithm.
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Figure 1. Overall description of the MLBO algorithm.



2.1 Congestion detection 

The main input of the MLBO algorithm is the cell congestion;
to this aim, each cell is categorized for each temporal slot
to different congestion states. The different congestion
states sorted from lower to higher congestion are: Normal
Operation (NO), Light Congestion (LiC), No Problematic
Congestion (NPC) and Hazard Congestion (HaC). The main
objective of the MLBO algorithm is to reduce the HaC cell
states trying to balance the network load.

A Fuzzy algorithm has been developed with the aim of
obtaining the different cell states. This algorithm uses Key
Performance Indicators (KPI) obtained from traces during
the studied temporal period. Each KPI is obtained per cell
and per temporal slot. KPI such as Receive Total
Wideband Power (RTWP), Total Carrier Power (TCP),
Radio Resource Control (RRC) connection requests, RRC
rejections, drop calls and input Handovers (HO) are used
in the Fuzzy algorithm [11]. 

2.2 CUP

In order to prove whether the recommendations for each
cell are optimal and solve the problem without being
harmful to the overall network state, there is a necessity to
know how the network evolves when a certain action is
applied. This verification task is complex because it depends
on many factors and these changes may have greater or
lower impact depending on the network evolution.
Therefore, changes should be gradual to see whether the
influence is positive or negative, but also to be able to come
back to the initial state when the event ends.

In order to estimate the level of aggressiveness of the
changes, and also to isolate in an online phase the
impact of changes, a network simulation tool is needed.
With this tool, recommendations will be applied and the
hypothetical network behavior will be evaluated. Up to
date, the solutions found in the literature are based on
radio predictions and the subsequent system simulation.
However, with the advent of SON, an alternative is
needed to take advantage of the available call-trace
information.

This paper proposes a new approach to the problem that
combines the available call-trace information with the
mathematical UMTS system characterization using load
concepts. This new solution, called CUP, will allow
speeding up the estimation of a change effect while
maintaining a realistic view thanks to the radio
parameters characterization adjustment.

The system will start from a network snapshot, extracted
from the call-trace received from the manufacturer. From
this information, all the calls will be processed, obtaining
for each one this information

• Serving cell.

• RACH-propagation delay of the serving cell.

• Call type (voice or data).

• In case it is a data call, mean throughput in UL and DL.

• Call duration, to measure this call impact.

• Relation of the monitored cell in a Measurement
Report (MR), with the mean Received Signal Code
Power (RSCP) level. In case there are several MR with
the same cell, the RSCP values will be averaged in a
single value. For one cell i, the mean RSCP value
received by a user m will be noted as Si,m.

Moreover, for all the topology cells the RTWP and TCP
mean values will be extracted as well as the CPICH power
of the cell i, Pc,i.

CUP calculates the evolution of the network behavior
taking into account that users remain static. This
approach allows working without the need for radio
predictions that will be replaced with the user real
measurements, ensuring the validity of the prediction. To
that end, the channel effect will be calculated between
the cell i and the user m, �i,m as

.                              
(1)

This �i,m value will be constant during all the prediction.

It is also important to know the consumed power of the
cell i; this value will be obtained directly from the data
base as

,                           (2)

where Pmax,i is the maximum transmitted power of the
cell i. If the Pmax,i value is not included in the topology
information, it will be taken as 20 W.

It is necessary to calculate the DL load factor for each cell.
The load system calculation is

.                             (3)

The procedure starts with theoretical values of the load
factor per service in the DL [12] [13]. Through this
information, the consumed power of the cell i to support
the user m is

,                (4)

where the �i,m is the orthogonality between the cell i and
the user m, �m is the activity factor of the user m, and
�m is the received Signal to Noise Ratio (SNR) of the user
m. The noise power value, PN, varies depending on the
particular base station and its temperature. Indeed, the
thermal noise level measured by each base station can
be processed to take a real approximation. However, if
this information is not available, a noise power of -102
dBm can be supposed.
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The power of the estimated cell is

.                             (5)

It is necessary that  
~Pi =Pi and, thus, an adjustment of

the factor �m is used. In particular, the following constant
is used

.                                (6)

Therefore, the target signal to noise ratio of each user is 

.   (7)

2.3 Calculation of the transition matrix T for the
Markov Decision Process

The T (s,a,s’i ) is the probability of, being in the s state
and applying the action a, passing to the s’i state. At first,
this matrix is filled using the CUP solution. For each s state,
all actions a are applied and the T matrix is updated. These
initial data are based on predictions and only when the
load balancing is operating in closed loop T matrix will
have real information.

The action a consists in decreasing the CPICH power, or
reducing the range of the HaC cell through the Cell
Individual Offset (CIO) parameter in active state or the
Quality offset (Qoffset) for cell reselection in idle state. The
modification of these parameters creates a load decanting
between the HaC cell and its neighbour cells. The value of
the corresponding radio signal offset is defined per cell
relation. After applying such offset another cell could
increase its load. Of course, this load cannot exceed a
certain value, prefixed as input parameter.

The T matrix is firstly filled after the CUP stage, where for
each slot and for all cells, all actions a are applied and the
T matrix is updated. More specifically, the reselection/HO
parameter consists in adding to all neighbour cells a virtual
offset to the measured RSCP values of the User Equipment
(UE) to decide the best serving cell. The offset values go
from -10 to -0.5. The CPICH offset is subtracted to the
CPICH of a congested cell to expel traffic to the neighbour
cells. The CPICH values go from -10 to 50 dBm. Based on
the specific parameter to be modified, the following
actions can be executed:

• CIO/Qoffset: The CIO/Qoffset parameter is added
to the RSCP of the neighbour cells before the UE
evaluates if a call can be transferred to some of
those cells

.     (8)

• CPICH: An increment of CPICH is subtracted to the
received signal level of the serving cell and, thus,
some neighbour cell i could receive the call if

.         (9)

• CPICH+CIO/Qoffset parameter: Like with the CPICH
parameter, a 	CPICH is subtracted to the received
signal level but those congested cells will be
blocked with the CIO/Qoffset. The CIO/Qoffset
between the serving cell and the congested cell
shall have an offset=- 	CPICH.

As a last means, a reduction of resources to the data
users can be applied. This action is named throughout
the paper as data block action.

The above actions can be applied under these two
conditions:

• When the number of congested cells after applying
the action is lower than before applying the action
but the load of each neighbour cell is lower than
100%.

• When the number of congested cells before and
after applying the action is equal but the total
cluster congestion has been reduced and the load
of each neighbour cell is lower than 100%.

2.4 Load balancing decision

The goal of the load balancing algorithm is to decongest
the HaC cells of the network without causing any other
problem. The state of each cell is classified in each
temporal slot (5 minutes, in this study). Therefore, the
load balancing algorithm has to be executed each slot.
For one slot, the block diagram is depicted in Figure 2.

As it can be seen, an action is tried first. It is important
to note that the T matrix will be updated continuously
with an updating function. Then, clusters will be created.
Finally, an action for each HaC cell will be found.

2.4.1 Creation of clusters

In order to simplify the MLBO problem, it is important to
limit the modifications to a certain cluster of cells that
confine the congested cells allowing the absorption of the
transferred load. Therefore, a cell clustering is necessary.

The involved parameters for the clustering are: the state of
the cell, the congestion state in the neighbourhood of a
cell, the distance to the problematic cell, the neighbouring
rings of the problematic cell and the minimum congestion
in a cluster.
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Figure 2. Block diagram load balancing function slot N.
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Different clusters are obtained considering the above
parameters, first, taking into account the cells with
congestion problems (HaC cells) and, in turn, with the
highest neighbourhood congestion state. Therefore, the
clustering algorithm starts with the HaC cell whose
neighbourhood is the most congested. After that, several
cells are included with a maximum order, where the root
order is defined as 1, its neighbourhood has order 2, the
neighbours of neighbour cells have order 3, and so on. The
maximum order is set to limit the size of the cluster and
then allow for a more efficient execution of load balancing.
Moreover, at least, all the root neighbour cells will be
included, where the root is the first cell added to the cluster.

Next, those neighbour cells of nodes with order two and
with a state HaC or NPC will be also included. For those
neighbour cells of the order-2 LiC or NO state cells, the
neighbour congestion will be studied and compared with
a threshold. If the congestion is higher than this
threshold, these cells will be also included in the cluster.
It is important to emphasize that it is not possible to have
a leaf node with a HaC state, where a leaf node is the
cell with the highest order in the cluster. If this happens,
the three lowest congested neighbour cells will be added
to the cluster. Finally, it must be guaranteed that a cell
does not belong to two different clusters. An example of
clustering is shown in Figure 3.

2.4.2 Selection of the best actions

For each HaC cell of a cluster, the algorithm tries to find
the best action that minimizes:

,           (10)

where s � [0,9] is the current cell state and s’i � [0,9] is
the final cell state after applying the action a. For each
cluster and for each HaC cell of the cluster, all actions are
tested getting a sorted list of actions that minimize F.

3. Results

In this section, simulation statistics and Keyhole Markup
Language (KML) results of the MLBO algorithm are
presented.

3.1 Statistics

The scenario under study is located in a European city
where traces have been collected during 287 temporal
slots, lasting each of them five minutes. There are 1149
HaC cells distributed among 96 slots, with an average of
12 HaC per slot. As aforementioned, there are three
types of proposed actions that imply the modification of
CIO/Qoffset, CPICH or CPICH+CIO/Qoffset. Table 1
shows the number of proposed actions, data block
actions and cells solved without proposing any action.
Note that a data block is proposed when it is not possible
to choose a reselection/HO or CPICH action due to:

• The actions proposed are bad actions; an action is
applied when some conditions are fulfilled as
explained in Section 2.3.

• The offset increment, for each pair of cells, has
already reached the maximum value in previous slots.

• T (s,a,s’i ) is not filled.

Likewise, a cell is solved without an action when, due to
the execution of the actions proposed in previous slots,
the cell has reduced its congestion state. Therefore, this
cell is not going to propose any more actions because no
action is needed.

Table 2 shows the percentage of cells that reduce the
congestion from HaC state and the percentage of cells
whose state is changed to a lower congestion level. In
this study, only the HaC cells with an action proposed
related with reselection /HO and CPICH are taken into
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Figure 3. Tree representation of a cluster.

F =argmin �N
i =1T (s,a,s’i) • s’i}
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account. That is, neither cells solved without action nor

cells solved with data block are not used in the results.

It is observed that the CPICH action is the one for which

a higher number of cells see a congestion state re -

duction.

Table 3 shows, for each one of the proposed actions, the

percentage of slots where congestion has been reduced

as well as the mean congestion decrease of those slots.

In this case, the CIO/Qoffset action outperforms the other

actions at network level per slot. In particular, the

averaged congestion is reduced about 12%.

3.2 KML Results

In Figure 4 and Figure 5, an example of the decongestion

is presented. In Figure 4, the starting point of the load

balancing test is shown, where no actions are applied,

so a HaC cell is shown in red colour. The same temporal

slot but with optimization actions applied, is represented

in Figure 5, where the HaC cell has turned into NPC and

the NO operation cell placed at the right side of the

figures has turned into a LiC cell. Therefore, the main

goal of the MLBO algorithm is accomplished since the

network congestion is balanced.
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                                       Actions proposed             Data block actions            Cells solved without action

CIO/Qoffset                                 430                                     592                                             127

CPICH                                          64                                     1054                                             31

CPICH+CIO/Qoffset                      68                                     1033                                             48

Table 1. HaC cells distribution depending on the proposed action.

                                         % Cells that reduce congestion             % Cells that reduce state (10 States)

CIO/Qoffset                                              72.1                                                              35.6

CPICH                                                        75                                                                65.6

CPICH+CIO/Qoffset                                   69.1                                                             57.35

                                         % Slots that reduce congestion         % Of the averaged decrease congestion

CIO/Qoffset                                                51                                                                12.1

CPICH                                                       41.7                                                               5.2

CPICH+CIO/Qoffset                                  39.58                                                             5.93

Table 2. Percentage of HaC cells reduction (congestion and state) with an action proposed.

Table 3. Information per slot.

Figure 4. Before applying the MLBO algorithm. Figure 5. After applying the MLBO algorithm.



5. Conclusions

This paper has presented the current version of the Astellia
MLBO algorithm, which is based on the modification of
reselection/handover and CPICH parameters. These
actions distribute the load from congested cells towards
neighbour cells with a lower congestion index. In
particular, the goal is to balance the network load by
decongesting HaC cells while cells in NO or LiC increase
their loads. The scenario has been clustered in order to
isolate the congestion problem to a group of cells in which
the problem is solved. The impact of the proposed actions
over the load of the different cells in a real network have
been evaluated and compared being the state of the cells
estimated through call traces collected from network
elements. 

It has been observed that the CPICH action is the most
effective one, showing the highest reductions in the
number of cells with congestion. However, from the
global network congestion point of view, the CIO/Qoffset
outperforms the other actions. The results highlight the
enormous potential of self-organizing systems and
encourage further research in this direction.
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