
Abstract

In Dynamic Contrast-Enhanced Magnetic Resonance
(DCE-MR) studies with high temporal resolution, images
are quite noisy, due to the complicate balance between
temporal and spatial resolution. For this reason, the
temporal curves extracted from the images present
important noise levels. Researchers use least square
methods to fit these curves to obtain pharmacokinetic
parameters. This adjust is affected by the noise, especially
in curves with high arterial contribution, where the
arterial phase (a useful marker in tumour diagnosis) can
be affected. The aim of this work is to implement an
automatic filtering method of the temporal curves in
order to obtain more accurate kinetic parameters by least
squares fitting and properly modelling the arterial phase.

Keywords: Tissue characterization, Neoplasia, Cancer,
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1. Motivation

These days, the radiologist qualitative diagnosis combined
with researcher quantifications offers a complete and
detailed report, which helps to locate small areas of
complicate detection and customize patient treatment [1].
In particular, this article is focused in DCE-MR studies [2],
which consist of injecting intravenous contrast agent to
the patient and analysing its diffusion through a specific
region of the organism, by means of sequentially acquired
images. In our case, the study tissue is the prostate.
Prostate cancer is one of the most lethal in male
population [3].

From every pixel of these images, signal intensity curves
versus time can be extracted. By the analysis of these
curves, several kinetic parameters [4] can be calculated
with least squares methods [5]. These markers are used to
characterise tissue and vascular processes, as angiogenesis
[6], especially when it is related to neoplasms, where the
ge ne ration of vessels has different characteristics
compared to the normal processes produced by the
organism.

However, images are quite noisy, because of non-
voluntary patient movement and high temporal resolution
requirements [7,8], affecting image quality in terms of
signal to noise ratio. The resulting enhancement curves
show undesired oscillations which frequently cause
incorrect fitting [9] and affect calculated parameters. This
problem is critical when curves show high arterial
contributions or specific patterns, like a fast signal
enhancement at the beginning, followed by a washout,
or fast descend at the end of the signal (potentially related
with tumours [10,11]), which can be penalized or masked
by the fitting process. Therefore, it is crucial to achieve an
appropriate characterization of the arterial phase (signal
peak which appears after contrast agent injection) and to
obtain more accurate kinetic parameters.

2. Methodology

In this work, an Automatic Filtering Methodology (AFM)
has been developed to eliminate the intrinsic noise of the
intensity curves, respecting the arterial phase, allowing a
more exact fitting of these curves to get robust
parameters and characterise accurately any tissue
[12,13].
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2.1. Pharmacokinetic modelling

In DCE-MR studies, 3 analysis can be realized: qualitative,
semiquantitative and quantitative [9]. In this article,
quantitative analysis has been studied, which consists in
the modelling of contrast concentration changes by
means of kinetic modelling techniques. In particular, the
two-compartment model has been chosen [14], based in
the contrast exchange between vascular space and
interstitial space, although there are other models [4,15].
A representative diagram of this model can be visualized
in Figure 1. 

The balance between the contrast agent concentration
over time in the tissue (Ctissue ) and the tissue-feeding
artery concentration (Cartery) and kinetic markers, can be
expressed with the equation (1) [16]: 

(1)

The pharmacokinetic parameters of the two-
compartment model are:

• Transfer constant Ktrans (min-1): relation between blood
flow contribution, endothelial surface (interior of blood
vessels) and capillary permeability.

• Rate constant kep (min-1): contrast return between
Extracellular Extravascular Space (EES) and vascular space.

• Intravascular extracellular volume fraction (blood
plasma) vp: tissue vascular contribution. 

Another parameter derived from the model is the EES
volume fraction ve, which represents the interstitial

volume (space between cells). This marker is obtained as
the quotient between Ktrans and kep:

(2)

ve and vp range is from 0 to 1 (from 0 to 100 if they are
percentages). Cartery is also known as Arterial Input
Function (AIF). The closest artery to the tissue with the
largest diameter is usually selected [17]. In Figure 2 there
is an example of an AIF selected at one of the iliac
arteries, which are commonly used as reference for the
prostate [18]. 

According to various studies, high values of Ktrans and kep
are related to the existence of neoplasms [19,20]. Every
biomarker controls a certain part of the enhan cement
curves, as it can be observed in Figure 3. For example, as
vp increases its value, the enhancement curve resembles
more to the AIF, as the values of the arterial phase are
increased. It can be assumed that Ktrans behaves as a
scaling factor, i.e., it does not affect curve shape
substantially. As for kep, it controls the downslope speed
of the curve (washout).

In order to calculate the pharmacokinetic parameters,
non-linear least squares are applied to fit the uptake
curves (although there are studies that also use linear
least squares [21]), minimising the residual between the
curve values and the pharmacokinetic function model
values.

2.2. AFM

With the aim of improving the usual least squares fitting
method to generate biomarkers, a filtering methodology
has been implemented, which is based on the usual
pattern of an arterial curve (baseline, fast uptake and
relatively fast washout). It is based in the division of the
intensity curves in three stages using two temporal limits,
following the physiological standards of vascular
contribution to the tissues:
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With the aim of improving the usual least squares fitting
method to generate biomarkers, a filtering methodology
has been implemented.

Figure 1. Diagram showing quantitative parameters
and fractional volumes, where ve is fractional extracellu-

lar space, vp is fraction occupied by plasma and vi is
fraction occupied by intracellular space.

Figure 2. AIF with its different phases: baseline (1),
peak enhancement (2), fast decay (3), recirculation (4)

and washout (5)

Ctissue=vpCartery (t) +   KtransCartery (u) e– kep (t–u)du∫
t

0

ve=
Ktrans

kep



• In the first stage (before contrast arrival), all values
become zero, because initially contrast does not exist.

• In the second stage (arterial phase), new samples are
added between the original ones by means of linear
interpolation. The number of samples is controlled by
the interpolation degree (for instance, if the
interpolation degree is 2, a new sample is inserted
between two previous samples, thereby duplicating
the existing number of samples between both
temporal limits).

• In the third stage (washout), different linear filters have
been tested (moving averages, lowess and robust
lowess, also known as rlowess) with maximum span
(which means maximum filtering). The objective of this
smoothing is to reduce the noise drastically in that
part, maintaining the tendency.

To make this division possible, both lower and upper
limits are needed. The lower limit ttower is defined as the
contrast arrival time, and the upper limit is set after the
purely arterial uptake of the tissue of interest. The
contrast arrival time is the temporal instant when the

contrast arrives at a certain area (blood vessels, organs
and so on), which is reflected in the curves as an
enhancement of the signal and a fast upslope. In order
to obtain the contrast arrival time, the procedure starts
by calculating the average curve of all the prostate
uptake curves. Then, the intensity value i where the
current curve x(t) exceeds the mean + 3 Standard
Deviation (SD) of the initial 6 dynamic values (i.e.
baseline) is obtained:

(3)

This number of dynamics is an empirical value, based on
the radiologist’s experience. To get a better
pharmacokinetic modelling, we need to match the AIF
arrival time and the uptake curves arrival time (ttower) [22],
ensuring that the onset instant is the same for both
curves.

As for the upper limit, the temporal difference between
the AIF arrival time and the AIF maximum, �tAIF, is
calculated. Then, the upper limit ttower is obtained as the
sum of the lower limit ttower plus 3 times �tAIF:

(4)
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Figure 3. (A) Variation of vp between 0 and 0.1, fixing Ktrans and kep with values of 0.004 and 0.04, respectively. (B)
Variation of Ktrans between 0.004 and 0.016, fixing vp and kep with values of 0 and 0.04, respectively. (C) Variation of

kep between 0.04 and 0.16, fixing vp and Ktrans with values of 0 and 0.004, respectively.

i >mean(x(t1: t6)) + 3 * SD (x(t1: t6))

tupper=tlower + 3 * �tAIF



This number of times is also an empirical value. In all the
studies, the arterial phase of the intensity curves was
contained in both limits. It should be pointed out that
the number of samples of the AIF arterial phase is lower
than the number of samples of the uptake curves arterial
phase. This fact can be explained because of the diffusion
that the contrast media experiments when entering
tissues [23]. To overcome this, a higher interpolation
degree was used for the AIF.

In Figure 4 there is a diagram which summarises the
proposed AFM. From the DCE-MR images, AIF and
uptake curves are extracted. Non-linear least squares are
applied to fit every extracted uptake curve in order to
obtain the pharmacokinetic parameters. With the AFM,
the uptake curves are processed to achieve more
accurate and reliable biomarkers by means of non-linear
least squares fitting. The same linear filter to smooth the
washout part of the uptake curves is used in the washout
part of the AIF. As explained before, the interpolation

degree of the AIF is greater than interpolation degree of
the uptake curves.

2.3. Case classification

The implemented filtering methodology is oriented
towards intensity curves with high arterial contributions.
To extract these kind of curves, the principal component
that resembles an arterial-like curve and its coefficients
from Principal Components Analysis (PCA) [24] have
been used. The principal component has been identified
applying the Pearson’s linear correlation coefficient to
every component with respect to the AIF. This
component has associated coefficients which represent
the arterial contribution value of every enhancement
curve. Sorting these coefficients, a group of curves with
high arterial contribution can be taken. In Figure 5, sorted
coefficients of the first component (the component with
the most variability) are graphically compared to sorted
coefficients of the arterial-like component.
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Figure 4. Diagram describing the whole workflow of the automatic designed filter. It can be seen the good fit in
the arterial phase (marked with green ellipses in the filtered fit) from filtered curves (interpolation + moving

average/lowess/rlowess), as opposed to the fit from non-filtered curves. Notes: The same linear filter is user for AIF
and temporal curves. NLSQ: Non-linear least squares.



As a criterion, the first 25 and last 25 coefficients are
chosen, associated with 25 arterial-like curves and 25
non arterial-like curves, respectively. With the knowledge
of the 3 type of curve patterns traditionally localized in
DCE-MR studies (type 1, progressive; type 2, plateau; and
type 3, washout [25]), 17 prostate studies have been
classified. These 3 types can be visualized in Figure 6. If
the number of type 3 curves is considerable (particularly
in the peripheral zone of the prostate), the probabilities
of presenting a tumour increase [26]. Other classification
procedures can be checked in [17,27].

The Table 1 shows the classification of every case, depending
on the morphology of the first and the last curves, sorted in
decreasing order of coefficient of the arterial-like
component. 

Once the case classification is made, a case of every type
is selected to show the obtained results in filtered curves
and non-filtered curves: case 1 (washout-progressive), case
9 (washout-plateau) and case 10 (plateau-progressive).

The results of these selected cases can be extrapolated to
the same cases types. In Figure 7, the 3 cases with their first
and last 25 curves and averages are represented. 

Case 1: Washout – progressive

Case 9: Washout – plateau
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The developed Automatic Filtering Methodology elimi-
nates the noise of the curves, allowing a more exact fit-
ting to obtain robust parameters.

Figure 5. Intersection between sorted coefficients
from high arterial contribution component (component
2) and sorted coefficients from component 1. The two
red rectangles highlight the first 25 coefficients and the

last 25 coefficients.

Figure 6. The three patterns of the washout phase:
type 1, progressive (blue); type 2, plateau (green) and

type 3, washout (red).

             Case                  1      2      3       4      5      6       7      8       9     10     11    12     13     14     15    16     17

 Washout-progressive     X                                                                                          X               X      X      X       X

     Washout-plateau                                                           X      X      X                                                                   

   Plateau-progressive               X      X      X      X      X                               X       X              X

Table 1. Case classification depending of the shape of the first and last sorted curves. The chosen cases 
(1, 9 and 10) are highlighted in gray.



Case 10: Plateau– progressive 3. Results

As for the results, the qualitative improvement between

fits is discussed at first place. It should be noted that an

interpolation degree of 2 and a moving average filter have

been used in this section, because globally they offer the

best results in comparison to the other linear filters options

(lowess and rlowess) and other interpolation degrees. 

In Figure 8, the average fit from the filtered first 25

curves in case 1 is more accurate in the arterial phase

than the average fit from the non-filtered first 25 curves

(marked with a green ellipse). Therefore, the obtained

parameters are more reliable. Moreover, there is a better

approximation in the washout part. In the last 25

curves, both fits are quite similar. It is also worth noting

that in both fits, there are 2 peaks, related with the

modelling assumption that there may be arterial

contributions.
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Figure 8. Comparison of average fit curves from non-filtered curves and average fit curves from filtered curves from case 1.

Figure 7. Classification of the 3 chosen cases. The
first 25 and the last 25 sorted curves are represented,

along with their averages.

Case 1: Washout – progressive

Figure 9. Comparison of average fit curves from non-filtered curves and average fit curves from filtered curves from case 9.

Case 9: Washout – plateau



In case 9, in the first sorted curves there is a precise

adjustment in the arterial phase and a notable fit in the

washout part, as in case 1. In the last curves, the average

fit from the filtered curves is more exact in the last

samples. This can be analysed in Figure 9.

In case 10, an undesired peak appears in the average fit

from the filtered first curves, due to the AIF influence and

the increment of samples in the arterial phase of the

AFM. A relatively good agreement is obtained between

the non-filtered and filtered adjustment, as it can be seen

in Figure 10.

Once analysed the fit morphology from filtered and non-

filtered curves, the next step is to measure the goodness

of fit with the parameter Mean Square Error (MSE) [5],

by calculating the difference between an intensity curve

and its fitting (fitted curve) :

(5)

In Table 2, it can be checked that mean and standard

deviation MSE values are reduced in filtered curves,

which implies a more exact fitting and more accurate and

reliable kinetic parameters.

Finally, the graphical comparison between kinetic

parameters (vp, Ktrans and kep) obtained from filtered and

non-filtered curves is showed for every curve of the case.

All curves are chosen for 2 purposes: to check the

goodness fit in different types of curves and to deduce

which parameters are prone to an arterial modelling.

Furthermore, an Analysis of Variance (ANOVA) are

performed [28] in order to asses for statistical significant

differences between markers from filtered and non-

filtered curves.

In Figure 11, results from case 1 are depicted, where all

vp values are greater in filtered curves than in non-filtered

curves, most of the Ktrans values are lower in the filtered

curves and most of the kep values from filtered curves

exceed kep values from non-filtered curves.
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Figure 10. Comparison of average fit curves from non-filtered curves and average fit curves from filtered curves
from case 10.

Case 10: Plateau– progressive

Table 2.Comparison between MSE values from filtered and non-filtered curves from the representative cases.

Case

1

9

10

MSE, all 
curves, no 

filter

427.04 ±
171.67

78.23 ±
40.81

117.92 ± 
66.57

MSE, all 
curves, with 

filter

132.60 ±
77.87

27.33 ±
21.49

71.54 ± 
35.64

MSE, first 25
sorted curves,

no filter

923.55 ±
184.75

184.47 ±
60.66

98.61 ±
37.48

MSE, first 25
sorted curves,

with filter

249.67 ±
93.45

63.90 ±
23.82

88.19 ±
32.64

MSE, last 25
sorted curves,

no filter

303.86 ±
82.31

55.72 ±
19.86

124.82 ±
77.41

MSE, last 25
sorted curves,

with filter

164.94 ±
90.52

10.01 ±
2.93

56.31 ±
34.04

k=1

N

� ( fitted curve (k) – intensity curve (k))2MSE= 1

N
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Figure 11. Comparison of the obtained kinetic parameters (vp, Ktrans and kep) from the filtered and non-filtered
curves from case 1.

Case 1: Washout – plateau

Figure 12. Comparison of the obtained kinetic parameters (vp, Ktrans and kep) from the filtered and non-filtered
curves from case 9.

Case 9: Washout – progressive



In Figure 12, the case 9, filtered vp values exceed non-
filtered vp values, as in case 1; also, filtered Ktrans values
are smaller than non-filtered Ktrans values, and kep values
quite similar in both cases.

The results from the ANOVA are represented in Table 3,
along with the mean and standard deviation of the
kinetic parameters from filtered and non-filtered curves.
There are statistically significant differences between the

filtered and non-filtered parameter values, as it can be

seen in all p-values lower than 0.001.Once analysed the

kinetic parameters calculated from the representative

cases, and considering the information of the fits, MSE

and ANOVA test, it is apparent that greater vp values,

smaller Ktrans values and similar kep values suitably

modelling the arterial contributions in comparison to the

obtained values from non-filtered curves. 
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Figure 13. Comparison of the obtained kinetic parameters (vp, Ktrans and kep) from the filtered and non-filtered
curves from case 10.

Case 10: Plateau– progressive

Table 3. Results detail showing the differences between the biomarkers from non-filtered and filtered curves 
(p-values from vp, Ktrans and kep).

Case

1

9

10

vp, all 
curves, no 

filter

0.019 ±
0.016

0.008 ±
0.018

0.022 ± 
0.018

vp, all 
curves, with 

filter

0.062 ±
0.022

0.058 ±
0.028

0.063 ± 
0.019

P vp

9.88*10
-324

5.26*10
-253

4.64*10
-138

Ktrans, all
curves,
no filter

0.035 ±
0.016

0.024 ±
0.0132

0.011 ±
0.005

Ktrans, all
curves,

with filter

0.021 ±
0.018

0.015 ±
0.009

0.004 ±
0.002

P Ktrans

1.19*10
-45

1.54*10
-51

5.13*10
-93

kep, all
curves,
no filter

0.037 ±
0.014

0.021 ±
0.009

0.010 ±
0.006

kep, all
curves,

with filter

0.033 ±
0.018

0.019 ±
0.010

0.002 ±
0.004

P kep

1.34*10
-6

2.25*10
-4

1.70*10
-83



4. Conclusions

Qualitatively, the curve fitting results are more accurate
in filtered curves than in non-filtered curves. The arterial
phase is properly fitted with the proposed algorithm. In
the generated parameters, the differences in the
biomarker vp are remarkable, showing larger values in
filtered curves than in non-filtered curves. Concerning
the MSE, it can be seen that the designed AFM gives a
better least square fitting, due to the reduced MSE values
in filtered curves. Analysing the parameters distribution,
the fit information, MSE values and ANOVA results, it can
be assumed that the better fit of the curve provided by
the proposed filter presents higher vp values, lower Ktrans

values and similar kep values in comparison to the
standard approach without filtering. 

It can be concluded that the temporal automatic filter
allows obtaining more accurate and reliable parameters,
both qualitatively and quantitatively, preserving the
arterial phase information in the least square fitting,
solving one of the limitations of this technique.
Furthermore, a better modelling in high arterial
contributions from the prostate is obtained. Therefore,
the results with the AFM are very satisfying.

As possible future lines, in order to quantify with greater
precision the improvement because exact parameters
value of every curve are not available, the following step
is the simulated curve generation, in addition to the use
of other kinetic models and tissues. 
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