2020 - 2022


This project addresses the research required for the development of mobile robotics in the cloud based on 5th generation mobile networks for the future IoT revolution. Low latency, high capacity demands, and a large number of mobile wireless entities connected to the Internet will require a continuous Ultra Dense Network (UDN) that is likely to use mmW bands to support future factory wireless connectivity. The connection network must be multi-hop, with connectivity nodes moving throughout the factory, even with drones, to ensure line of sight conditions for successful mmW communication. The nodes can cooperate in the transmission/ reception of data in a centralized or distributed way. In addition, the design of the protocol, mainly speaking of the PHY and MAC procedures, will guarantee the minimum battery consumption of the communicating machines. The objective of the project is to research and optimize the operation of RAN architectures for 5G standards beyond NR phase 2, and to design reliable and realistic PHY and MAC procedures adapted to this new communication model composed of mesh networks and mobile nodes. The ultimate goal is to achieve an improvement in the latency, reliability, and capacity of the large number of robots, drones, droids and humans that will work together in the factory of the future. In this context, the new communication paradigm of mmW and continuous UDNs together with the use of multihop cellular communications play a transversal role. During the project, the performance of the systems will be evaluated, simulations, RF measurements, and experiments with a large number of devices will be performed to validate the design principles used. For this purpose, the VLC-CAMPUS-5G will be exploited. In addition, this project aims to attract the talent of women to the new job opportunities that 5G will generate. This project has been funded by the Prometeo 2020 grant from the Generalitat Valenciana to carry out R & D & I projects for research groups of excellence. consumption of the communicating machines.

Principal investigator

  Narcis Cardona Marcet

Research Group

Mobile Communications Group (MCG)