Integrated Microwave Photonic Processors using Waveguide Mesh Cores




  Daniel Pérez López


  Ivana Gasulla Mestre
  José Capmany Francoy


Integrated microwave photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint and cost. Application Specific Photonic Integrated Circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long-development times and costly implementations.

A different approach inspired by electronic Field Programmable Gate Arrays is the programmable Microwave Photonic processor, where a common hardware implemented by the combination of microwave, photonic and electronic subsystems, realizes different functionalities through programming. Here, we propose the first-ever generic-purpose Microwave Photonic processor concept and architecture. This versatile processor requires a powerful end-to-end field-based analytical model to optimally configure all their subsystems as well as to evaluate their performance in terms of the radiofrequency gain, noise and dynamic range. Therefore, we develop a generic model for integrated Microwave Photonics systems. The key element of the processor is the reconfigurable optical core. It requires high flexibility and versatility to enable reconfigurable interconnections between subsystems as well as the synthesis of photonic integrated circuits. For this element, we focus on a 2-dimensional photonic waveguide mesh based on the interconnection of tunable couplers. Within the framework of this Thesis, we have proposed two novel interconnection schemes, aiming for a mesh design with a high level of versatility. Focusing on the hexagonal waveguide mesh, we explore the synthesis of a high variety of photonic integrated circuits and particular Microwave Photonics applications that can potentially be performed on a single hardware. In addition, we report the first-ever demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate a world-record number of functionalities on a single photonic integrated circuit enabling over 30 different functionalities from the 100 that could be potentially obtained with a simple seven hexagonal cell structure. The resulting device can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks as well as quantum information systems. Our work is an important step towards this paradigm and sets the base for a new era of generic-purpose photonic integrated systems.