Research Projects

  • 2020

  • Advanced Urban Delivery and Refuse Recovery (AUDERE)

    AUDERE aims to design and develop an intelligent and innovative system for urban refuse collection y and last-mile delivery logistics. To fulfil this objective, a fleet of autonomous vehicles (autonomous mobile robots) are equipped with 5G connectivity to carry out last-mile delivery and urban waste container recovery tasks. The AUDERE system will assess the technical, economic, social, and environmental viability in a range of use cases. Therefore, AUDERE will offer high-tech solutions to the growing forward and reverse logistics needs in our cities. Trials will be performed in two scenarios. The first one is the VLC-CAMPUS-5G of the Universitat Politècnica de València, which is equipped with the infrastructure of a private 5G mobile network that allows the validation of different use cases, such as logistics, automotive, industry, media, among others. In addition, among the main advantages of VLC-CAMPUS- 5G we can mention that it is a closed and controlled environment, which could be considered as a small city due to its infrastructure, commercial and sport places, banks, parks and where more than 20,000 people move daily. The second scenario is the La Pinada District, which is an eco-district, the first in Spain, that will integrate the principles of sustainable urban development, creating an attractive environment for family living, work, and enjoyment of nature. The results of this project will define new technological products that can be deployed in Smart Cities or Smart Quarters.
  • Piloto de Tecnología 5G Comunidad Valenciana (

    This is a project to validate the capabilities of 5G technology in Valencia, Spain by testing 15 use cases that involve sectors of health, industry, energy, gaming, and tourism. Valencia 5G has a budget of 10,145,234 euros and involves Orange, Huawei, Arborea Intellbird, CFZ Cobots, Global Omnium Idrica, Etra Research, and Development, Red Eléctrica y de Telecomunicaciones Innovación y Tecnología and Robotnik. The project aims to contribute from three approaches: support the deployment of the first 5G networks in Spain; experiment with the network management techniques; and testing the main capabilities of the technology: ultra-reliable and low-latency communications; massive machine-to-machine communications; and extremely high speed and capacity mobile broadband. The MCG of the iTEAM will be involved in 5 out of 15 uses cases, being these: (1) Robotic Remote diagnostic. (2) Fleet management: Robotics Remote control of AGVs. (3) Robotics-Remote inspection and maintenance. (4) 5G Digital Contents. (5) Massive IoT for smart meters in supplies. The use case of robotic remote diagnostic for the skin cancer diagnostic using the 5G mobile communications network, consisting of a specialist will scan the patient remotely using robotic arms that have built-in biometric sensors that capture and process the information. On the other hand, the VLCCAMPUS-5G of the Universitat Politècnica de València, has been chosen as one of the testing scenarios.
  • Plataforma Hibrida de Nitruro de Silicio para Circuitos Ópticos Integrados

    Co-IPs: Pascual Muñoz Muñoz / Daniel Pastor Abellán: La fotónica integrada ha experimentado un crecimiento exponencial en los últimos 10 años, gracias la investigación, desarrollo y explotación comercial de tecnologías genéricas, que permiten en un único micro-chip, sistemas fotónicos complejos. Estas tecnologías cubren varias partes del espectro, en función de las propiedades de los materiales empleados en fabricación, para distintas aplicaciones, entre el visible (VIS), infrarrojo cercano (NIR) y medio (MIR). Sin embargo, no existe una plataforma tecnológica de banda ancha que permita guiar luz de todo el espectro, esto es VIS, NIR y MIR. Aun si existiese, el problema de hibridación con otras tecnologías activas, para poder incorporar fuentes y detectores de luz, tampoco estaría resuelto. Junto con los dos aspectos anteriores, la creciente complejidad de los circuitos ópticos integrados (PICs) requiere de métodos de caracterización avanzada, más allá de los tradicionales. En esta propuesta se plantea investigar y desarrollar tecnologías, procesos de fabricación y diseño, junto con los métodos de caracterización asociados, para avanzar en la resolución de estos tres desafíos: i) una plataforma pasiva de integración fotónica que cubra VIS, NIR y MIR, ii) métodos de caracterización avanzados y iii) los procesos de fabricación para hibridación de con tecnologías activas. La propuesta se construye sobre la trayectoria del grupo en investigación, desarrollo y transferencia de tecnología, y está apoyada por agentes del sector público y privado relacionados, e interesados en los resultados. El grupo posee también una trayectoria de formación de recursos humanos altamente especializados y transferencia al tejido empresarial de la fotónica en general, e integrada en particular.


    IP: Pascual Muñoz Muñoz: The new action continues the previous infrastructure project (“Micro-manufacturing for photonics, electronics and chemistry” GVA / IDIFEDER / 2018/042 (2018-2020). The infrastructure is at the class 100/10000 (ISO 5 / 7) 500 m2 micro-fabrication pilot line / clean room More specifically, it is intended to complement the installation with the following equipment: 1) (Deposition) Sputter for cylindrical samples, 2) (Attack) Wet banks and attack tanks for samples and wafers up to 6 inches, 3 ) (Attack) Extraction and neutralization systems for wet banks and attack tanks, 4) (Metrology) FTIR equipment with microscope for sample analysis. 5) (Post-process) Microscopic transfer equipment by priming chips from 2-4 inches wafers to 6 inches wafers. The general objective is to develop new technological processes in the work areas of the proposing groups (ITEAM, ITQ, CI2B), specifically: I) integrated photonics, II) integrated catalytic membranes and III) electro-chemical devices.


    This project addresses the research required for the development of mobile robotics in the cloud based on 5th generation mobile networks for the future IoT revolution. Low latency, high capacity demands, and a large number of mobile wireless entities connected to the Internet will require a continuous Ultra Dense Network (UDN) that is likely to use mmW bands to support future factory wireless connectivity. The connection network must be multi-hop, with connectivity nodes moving throughout the factory, even with drones, to ensure line of sight conditions for successful mmW communication. The nodes can cooperate in the transmission/ reception of data in a centralized or distributed way. In addition, the design of the protocol, mainly speaking of the PHY and MAC procedures, will guarantee the minimum battery consumption of the communicating machines. The objective of the project is to research and optimize the operation of RAN architectures for 5G standards beyond NR phase 2, and to design reliable and realistic PHY and MAC procedures adapted to this new communication model composed of mesh networks and mobile nodes. The ultimate goal is to achieve an improvement in the latency, reliability, and capacity of the large number of robots, drones, droids and humans that will work together in the factory of the future. In this context, the new communication paradigm of mmW and continuous UDNs together with the use of multihop cellular communications play a transversal role. During the project, the performance of the systems will be evaluated, simulations, RF measurements, and experiments with a large number of devices will be performed to validate the design principles used. For this purpose, the VLC-CAMPUS-5G will be exploited. In addition, this project aims to attract the talent of women to the new job opportunities that 5G will generate. This project has been funded by the Prometeo 2020 grant from the Generalitat Valenciana to carry out R & D & I projects for research groups of excellence. consumption of the communicating machines.

    5G-RECORDS aims to explore the opportunities which new 5G technology components - these include the core network (5GC), radio access network (RAN) and end devices - bring to the professional production of audiovisual content. The project targets the development, integration, validation and demonstration of 5G components for professional content production, as part of an overall ecosystem integrating a subset of 5G network functions. The project aims to use of 5G non-public networks (NPNs) as a way to bring these new 5G components to emerging markets and new market actors, while also addressing recent emerging remote and distributed production workflows where cloud technologies cooperate with 5G. 5G-RECORDS has considered 3 use cases to embrace some of the most challenging scenarios in the framework of professional content production: live audio production, a multi-camera wireless studio and live immersive media production. iTEAM is the coordinator of the project. This project has been H2020.   5G PPP

    FUDGE-5G will make a leap forward in realizing the notion of cloud-native 5G private networks by developing a further enhanced ServiceBased Architecture (eSBA) for both control plane and user plane with “decomposed” players of the ecosystem divided into: New Radio (NR) access network infrastructure provider, eSBA platform provider, mobile 5G Core (5GC) provider, vertical application orchestration provider and vertical service provider. The forward-looking FUDGE-5G architecture will also feature “allEthernet” 5GLAN (Local Area Network), 5G-TSN (Time- Sensitive Networking), 5G-Multicast and intelligent vertical application orchestration features. The proposed framework enables highly customized cloud-native deployment of private 5G networks. FUDGE-5G will accelerate the (inevitable) shift to a fully software-based 5G core network by offering a disintegrated environment where components, both in control and user plane, can be deployed anywhere as micro-services (i.e., edge, on premises and cloud),being agnostic to the underlying infrastructure. This softwarization exposing 5G NR HW to third parties will enable the usage of off-the-shelf commodity HW to deliver additional cost savings, faster deployments and ultimately greater adoption for private networks. iTEAM is the coordinator of the project, and the leader of the media use case. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957242.
  • Integrated Telematics for Next Generation 5G Vehicular Communications (ITN-5VC)

    ITN-5VC aims to investigate how multi-band multi-antenna communications, including mmWave, could be integrated together with radar heads and other wireless sensors into the same telematics unit, so that transmission chains and radiation systems were reused using the same spectrum in an opportunistic manner. This idea has important implications in the design of the vehicle and its communications that will also be addressed in the project. With this premise, the project aims to investigate the future C-V2X systems based on 5G NR and how to integrate them with autonomous driving sensor systems.

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 955629.


    iNGENIOUS will exploit some of the most innovative and emerging technologies in line with the standardised trend, contributing to the Next-Generation IoT and proposing technical and business enablers to build a complete platform for supply chain management. iNGENIOUS embraces the 5G Infrastructure Association (5G IA) and Alliance for Internet of Things Innovation (AIOTI) vision for empowering smart manufacturing and smart mobility verticals. The iNGENIOUS network layer brings new smart 5G-based IoT functionalities, federated Multi-Access Edge Computing (MEC) nodes and smart orchestration, needed for enabling the projected real-time capable use cases of the supply chain. Security and data management are fully recognized as important features in the project. iNGENIOUS will create a holistic security architecture for next-generation IoT built on neuromorphic sensors with security governed by Artificial Intelligence (AI) algorithms and tilebased hardware architectures based on security by design and isolation by default. In the application layer, iNGENIOUS new AI mechanisms will allow more precise predictions than conventional systems. Project outcomes will be validated into 4 large-scale Proof of Concept demonstration, covering 1 factory, 2 ports, and 1 ship, encompassing 6 uses cases. iTEAM is the coordinator of the project, and the leader of the media use case. INGENIOUS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957216
  • 2019

  • Risk-based Approaches to Good Environmental Status (RAGES)

    Risk-based Approaches to Good Environmental Status (RAGES) is a two-year European project which aims to support the development and operational implementation of regional indicators, lists of elements and threshold values and integration rules for Good Environmental Status.  The RAGES project is comprised of a consortium made up of competent authorities from Ireland, France, Spain and Portugal with (regional and sub-regional) responsibility for the implementation of the Marine Strategy Framework Directive (MSFD) in the North East Atlantic region, comprising the Celtic Seas, Bay of Biscay and Iberian as well as Macronesian sub-regions and will work closely with the OSPAR commsision. The Signal Processing Group - Underwater Acoustic Lab of the iTEAM will work in the RAGES project both: developing machine learning algorithms for the detection of marine mammals and performing acoustic recording campaigns in the Bay of Biscay. The information obtained will be applied at a sub-regional scale to the analysis of energy and noise (Desciptor 11).  The findings and best practices will be used to recommend targets for these descriptors as well as to develop a transferrable Standard Operating Porcedure.
  • Applications and Fundamentals of Microresonator Frequency Combs (MICROCOMB) (MSCA-ITN-2018-ETN)

    IP: Pascual Muñoz Muñoz. MICROCOMB is a collaborative research and training network, gathering together 17 European universities, research centers and industrial partners with complementary expertise on microresonator technology and the observation and exploitation of the microresonator frequency combs.  Microcombs are emerging as a disruptive technology for realizing precision metrology, frequency and waveform synthesis and optical processing of information on a chip-scale platform. A typical microcomb setting is a microring resonator evanescently coupled with a waveguide mode, which is pumped by a continuous wave laser by means of a non-linear process like four-wave mixing (Kerr nonlinearity). Applications of microcombs for processing information with terabit rates, take advantage of the smaller resonator length and therefore being compatible with higher data transmission rates and also of the broad spectral coverage extending over C, L and U optical transmission bands. Other applications are: astronomical research, molecular spectroscopy, arbitrary wave form generators and RF and THz signal processing and generation. Website:

Últimos tweets


Última Hora

8G Building. 4th Floor, D access
Universitat Politècnica de València
Camino de Vera, s/n
46022 Valencia